The Testing Effect in a Social Setting: Does Retrieval Practice Benefit a Listener?

Magdalena Abel and Henry L. Roediger III
Washington University in St. Louis

Retrieval practice boosts retention relative to other study strategies like restudying, a finding known as the testing effect. In 3 experiments, the authors investigated testing in social contexts. Subjects participated in pairs and engaged in restudy and retrieval practice of vocabulary pairs. During retrieval practice, 1 subject acted as speaker (overt practice); the other subject listened and monitored the speaker’s responses (covert practice). All experiments showed testing effects, with overt practice by speakers enhancing recall relative to restudy after a 2-day delay. In Experiments 1 and 2, covert practice by listeners did not benefit recall as much as overt practice. Only in Experiment 3, when listeners were asked to monitor their own covert retrieval (instead of the speaker’s overt retrieval), did both types of practice convey similar benefits. The results indicate that memory retrieval is not necessarily as beneficial for listeners as for speakers. The practical implication is that the practice of teachers asking questions in class will not yield a positive effect unless special measures are taken to insure students’ effortful covert retrieval.

Keywords: retrieval practice, testing effect, social context, delay

Retrieval practice has beneficial effects on both recall and recognition, as demonstrated by a large volume of research on the testing effect. Retrieval practice has repeatedly been shown to boost performance, especially on delayed tests (e.g., Carpenter, Pashler, Wiited, & Vul, 2008; Carrier & Pashler, 1992; Pyc & Rawson, 2010; Roediger & Karpicke, 2006; for a brief review, see Roediger & Butler, 2011). Further research indicates that this benefit not only arises when retrieval practice is compared to passive restudy opportunities, but also when it is compared to elaborative study techniques instead (concept mapping or the keyword-technique; see Karpicke & Blunt, 2011; Karpicke & Smith, 2012). Moreover, testing effects have also been shown to occur in classrooms (e.g., McDaniel, Roediger, & McDermott, 2007; McDermott, Agarwal, D’Antonio, Roediger, & McDaniel, 2014), encouraging its use in applied educational contexts to improve learning.

One neglected factor in this body of research is social context. Most studies on the testing effect have examined individual subjects engaging in retrieval practice (or other forms of practice) in isolation. However, retrieval practice often occurs in social settings. Students often study in groups, asking each other questions. In classrooms, teachers often ask questions for students to answer during class or encourage students to work in groups to solve a problem. Previous research on collaborative memory retrieval indicates that working with others during remembering may come with certain costs for recall during collaborative retrieval, but also with certain benefits for later individual memory (see Rajaram, 2011; Rajaram & Pereira-Pasarin, 2010). The question that the current research addresses is whether retrieval practice carried out by an individual in the company of others may benefit not only that individual but also others who are listening to the question and answer. For example, in a classroom discussion a teacher may ask a question and only one student will answer while the rest of class is supposed to “think along” when listening to the student’s answer. The hope is that the other students will be retrieving the answer covertly, or trying to. But does being exposed to another person’s memory retrieval actually provide similar benefits for listeners? The combined findings of two separate lines of research suggest that this might be the case, and we review them in turn.

When the teacher asks a question in a classroom and one student answers, the other students may be answering the question themselves covertly (or at least trying to). Two sets of experiments indicate that covert retrieval (i.e., thinking of an answer but not saying or writing it) can lead to robust testing effects, at least in individual recall. Smith, Roediger, and Karpicke (2013) asked subjects to engage in retrieval practice and either to type in their answers (overt practice) or to keep on thinking about their answers (covert practice). Across four experiments, performance on a final test was equivalent for such overt and covert forms of retrieval practice. The finding emerged after relatively short delay intervals of 15 min, but it also appeared after 2 days. A direct comparison of forgetting rates across delays also indicated comparable forgetting after overt and covert practice. Consistent with prior work, forgetting after both forms of retrieval practice was attenuated.
compared to a restudy condition. Similar results were reported by Putnam and Roediger (2013). During retrieval practice, subjects in their experiments were asked to say their answers out loud, to write them down, or to think about them. Again, these different forms of retrieval practice were equally beneficial for recall on a final test, also relative to a restudy condition. Taken together, overt and covert practice seem to produce comparable testing effects, at least in individually working subjects (for further findings, see Carpenter et al., 2008; Izawa, 1976; but see also Jönsson, Kubik, Sundqvist, Todorov, & Jonsson, 2014; Tauber et al., in press).

A second line of relevant research is by Hirst and his colleagues, who examined selective retrieval practice in a social context and focused on the resulting negative effect for information that is not practiced (i.e., retrieval-induced forgetting; see Anderson, Bjork, & Bjork, 1994). Cuc, Koppel, and Hirst (2007) tested pairs of subjects and asked one of the two (the speaker) to retrieve a subset of previously studied information out loud while the second subject (the listener) was asked to monitor the speaker’s recall for either accuracy or fluidity. On a final test for all initially studied information, Cuc et al. observed retrieval-induced forgetting for the nonpracticed information (relative to a control condition) not only for the speakers, but also for the listeners (for similar findings, see Abel & Bäuml, 2015; Coman, Manier, & Hirst, 2009; Stone, Barnier, Sutton, & Hirst, 2013; for a review, see Hirst & Echterhoff, 2012). Importantly, however, Cuc et al. (2007) only found socially shared retrieval-induced forgetting in listeners when they were asked to monitor the speaker’s responses for accuracy. When listeners were instead asked to monitor for fluidity or smoothness of recall, no socially shared forgetting emerged. Based on this finding, Cuc et al. argued that the effects of selective retrieval practice can be socially shared between speakers and listeners, but only when listeners are motivated to engage in covert retrieval practice along with speakers. Coman and Hirst (2015) arrived at the same conclusion in research using a somewhat different version of the paradigm.

Yet, to date, researchers have not directly examined whether benefits from retrieval practice can be socially shared and “transmitted” from speakers to listeners when a typical testing-effect paradigm is used, with a restudy baseline to evaluate the benefits of retrieval practice more closely (for other related work, however, see Congleton & Rajaram, 2011; Wissman & Rawson, 2016). In retrieval-induced forgetting experiments, some material is practiced and those data can be examined, even though they are usually not equated to a restudy baseline and also not of primary interest in this context. Mean performance for practiced items was reported by Cuc et al. (2007), along with analyses showing that practice effects were present (relative to a baseline condition without any practice) for both speakers and listeners. However, even though practice effects occurred in listeners, in two of the three experiments reported by Cuc et al., practiced items were remembered better by speakers than by listeners. Other studies using the same speaker-listener paradigm reported mixed findings as well (e.g., Brown, Kramer, Romano, & Hirst, 2012; Koppel, Wohl, Meksin, & Hirst, 2014; Stone, Barnier, Sutton, & Hirst, 2010). Thus, prior research does not allow firm conclusions on whether retrieval practice affects a testing effect for listeners as well as speakers in social retrieval-induced forgetting experiments.

Because prior research is not definitive, we embarked on three experiments specifically designed to ask if testing effects arise relative to a restudy baseline in social settings and whether they are of the same magnitude for speakers and listeners. All experiments applied a typical testing-effect design but were additionally modeled after the prior work on socially shared retrieval-induced forgetting (e.g., Cuc et al., 2007). Pairs of subjects studied Swahili-English vocabulary pairs and then engaged in restudy of some of the material and in retrieval practice of the rest. In addition, one subject was asked to act as the speaker and to practice retrieval aloud while the other subject was asked to listen and to monitor the first person’s responses for either accuracy of the response or its fluidity and smoothness of production. A final test on all word pairs (restudied, overtly retrieved, covertly monitored) was completed after 3 min or 2 days. We expected to observe regular testing effects (i.e., better recall after retrieval practice compared to restudy, especially with longer delays; see Roediger & Karpicke, 2006). In addition, based on the study by Cuc et al. (2007), we expected only accuracy (and not fluidity) monitoring to trigger covert retrieval practice. Based on the findings of comparable testing effects after overt and covert retrieval practice in individuals (Putnam & Roediger, 2013; Smith et al., 2013), monitoring another person’s answers for accuracy was predicted to be as beneficial for later retention as overt retrieval practice.

Experiment 1

Method

Participants. Sample sizes in all reported experiments were determined based on prior work on the testing effect (e.g., Roediger & Karpicke, 2006), while at the same time allowing for full counterbalancing of the stimulus materials. One hundred forty-four students at Washington University in St. Louis were recruited for Experiment 1. Subjects participated in pairs and were evenly distributed across one of four conditions ($n = 36/condition$). Allocation of pairs of subjects to conditions was quasi-random, with alternating allocations to the different delay and monitoring conditions. Mean age was 19.7 years ($SD = 1.4$ years). Subjects received course credit or $10 for participation. The study protocol was approved by the local institutional review board (IRB).

Material. Thirty Swahili-English word pairs of medium difficulty (e.g., chaza–oyster, hadithi–story, mfupa–bone) were selected from the Nelson and Dunlosky (1994) norms and were divided into three sets of 10 word pairs each, with sets roughly equated for difficulty. Across subjects, each set was equally often used as stimulus material in retrieval-practice, restudy, and monitoring-task conditions, thus counterbalancing materials across conditions.

Design. The experiment employed a $3 \times 2 \times 2$ mixed-factorial design. The first factor was the practice condition (retrieval practice, restudy, monitoring) and was manipulated within subjects. After initial study, all participants engaged in retrieval practice for one third of the material (i.e., 10 pairs), in restudy for another third, and in a monitoring task for the last third. The type of monitoring factor (accuracy monitoring, fluidity/monitoring) was manipulated between subjects. When engaging in the monitoring task, half of all participants judged the accuracy of the other subject’s answers during retrieval practice; the other half monitored the other person’s retrieval with regard to fluidity and smoothness (which is supposed to cause a more superficial form of
monitoring, not involving overt retrieval; for details, see Cuc et al., 2007). Within pairs, the two subjects were always asked to engage in the same type of monitoring task. Finally, retention interval (3 min, 2 days) was also manipulated between subjects. A final test on all word pairs was given after 3 min or 2 days.

Procedure.

Study phase. In the initial study phase, the 30 word pairs were presented in a random sequence, for 5 s each, centrally on a computer screen. Two subjects were tested together and sat silently in front of the same computer screen when studying the list; they were asked to try to memorize all word pairs for a final test.

Practice phase. After initial study, subjects were informed that all word pairs would be practiced in three separate blocks (with one third of word pairs practiced in each block). There were three practice cycles on each block, so that each vocabulary pair was repeated three times throughout the course of the respective practice block. Sequencing of word pairs during each practice cycle was random; after all 10 word pairs belonging to a certain practice block had been practiced, a new practice cycle began, with a new random sequence.

Practice blocks differed in the type of practice in which subjects were asked to engage. In the restudy block, word pairs were presented in intact form on the screen for 7 s each; both subjects were asked to silently restudy the word pairs and to make use of the additional study time. In the other two practice blocks, however, one of the two subjects was asked to engage in overt retrieval practice while the other participant was asked to engage in a monitoring task; thus, the block that constituted the active practice while the other participant was asked to engage in a monitoring task; this, the block that constituted the active practice condition for one subject simultaneously constituted the monitoring condition for the other subject. In these two blocks, the Swahili words were presented on the screen for 5 s each and in random order; one of the subjects was asked to act as the speaker and to try to recall the English meaning out loud. Selection of subjects as speakers and listeners was counterbalanced. For half of all subject pairs, the person sitting on the left side of the screen was asked to be the speaker on the first block that involved retrieval practice (the person on the left was asked to be the listener and to engage in the monitoring task). For the other half of all subject pairs, the person sitting on the right was asked to be the speaker on the first block involving retrieval practice (the person on the left acted as the listener). Roles were always switched on the second block with retrieval practice (so that the person who acted as speaker on the first block now acted as listener, and vice versa). Corrective feedback was presented for 2 s after each 5-s retrieval-practice trial, thus equating the overall time of processing with the restudy condition. In particular, corrective feedback was presented in order to avoid social contagion with incorrect answers (e.g., Meade & Roediger, 2002; Roediger, Meade, & Bergman, 2001) and to increase potential testing effects (e.g., Arnold & McDermott, 2013; Kang, McDermott, & Roediger, 2007; Pashler, Cepeda, & Rohrer, 2005; see also Rowland, 2014). The subject who was not asked to engage in overt retrieval practice was instead asked to listen to the other participant and to monitor his or her retrieval. In the accuracy monitoring condition, listeners were asked to indicate on a 7-point scale, ranging from 1 (not accurate at all) to 7 (very accurate) how accurate the other subject’s answer was, separately for each retrieval-practice trial. In the fluidity monitoring condition, listeners were asked to judge on a similar 7-point scale how fluid and smooth the speaker’s retrieval was, ranging from 1 (not fluid at all) to 7 (very fluid), again separately for each trial. All monitoring judgments were written, with listeners choosing response options on prepared response sheets; speakers were not informed about the listeners’ choices. When engaging in monitoring, subjects were asked to make their judgments before the corrective feedback was presented on the screen; judging from the experimenter’s perspective, subjects were able to do this on most practice trials. The sequence of practice blocks was counterbalanced across subjects, just as sets of stimulus materials were equally often assigned to each type of practice across subjects. After completing the last practice block, all subjects solved simple arithmetic equations for 3 min as a distractor task.

Final test phase. On the final test, subjects worked on separate computers. Subjects in the short-delay condition completed the test after the 3-min distractor task; subjects in the long-delay condition left the lab and returned to take the same test after 2 days. For the test, the Swahili words of all 30 word pairs were presented in random order for 10 s each on the screen, and subjects were asked to write down the response terms on a piece of paper. After completing the test, subjects were debriefed and thanked for their participation.

Results

Success rates on retrieval-practice cycles. Figure 1 shows mean retrieval success, separately for the three retrieval-practice cycles and as a function of (delay and monitoring) conditions. A $3 \times 2 \times 2$ analysis of variance (ANOVA) with the within-participants factor of retrieval-practice cycle (first, second, third) and the between-participants factors of monitoring task (accuracy monitoring, fluidity monitoring) and delay (3 min, 2 days) revealed a significant main effect for the factor retrieval-practice cycle, $F(2, 280) = 741.60, MSE = 160.85, p < .001, \eta^2 = .84$. Corrective feedback improved recall from the first to the second (16.7% vs. 52.5%), $t(143) = 24.65, p < .001, d = 2.08$, and from the second to the third retrieval-practice cycle (52.5% vs. 70.7%), $t(143) = 15.14, p < .001, d = 1.26$. No other main effects or interactions reached significance, all $Fs < 1.0$, which confirms that success rates on the three retrieval-practice cycles did not differ between conditions (which had yet to be instantiated).

Accuracy monitoring performance. To see how accurate listeners were when monitoring for the other subject’s accuracy,

![Figure 1](https://example.com/figure1.png)

Figure 1. Mean recall performance on the three retrieval-practice cycles in Experiment 1, shown separately for the four conditions (differing in whether the final test was later administered after a 3-min or 2-day delay, and in whether retrieval-practice performance of the other subjects was monitored for accuracy or fluidity).
we analyzed their rating performance (see Table 1 for both monitoring and retrieval-practice performance in the accuracy monitoring condition). We coded the percentage of all 10 trials on each retrieval-practice cycle in which subjects correctly endorsed the other participant’s correct answers (i.e., when they rated the other participant’s correct response with > 4 on the 7-point scale). A 3 × 2 ANOVA with the within-participants factor of retrieval-practice cycle (first, second, and third) and the between-participants factor of delay (3 min, 2 days) revealed a significant main effect for the factor retrieval-practice cycle, F(2, 140) = 261.73, MSE = 234.80, p < .001, η² = .79. Similar to accuracy in retrieval practice of speakers, accuracy monitoring by listeners improved from the first to the second (9.3% vs. 41.8%), t(71) = 13.61, p < .001, d = 1.60, and from the second to the third retrieval-practice cycle (41.8% vs. 61.3%), t(71) = 11.59, p < .001, d = 1.37. No other main effects or interactions reached significance, all Fs < 1.0, showing that there were no differences between delay conditions.\footnote{An additional ANOVA directly comparing retrieval-practice success by speakers and monitoring performance by listeners only revealed a significant main effect, F(1, 70) = 8.27, MSE = 790.36, p = .005, η² = .11, reflecting somewhat better recall by speakers than monitoring by listeners (45.2% vs. 37.5% across all retrieval-practice cycles). Thus listeners failed to recognize about 8% of the correct responses of speakers. Nevertheless, the lack of any interaction effects (all Fs < 1.0, all ps ≥ .33) indicates that monitoring performance followed the same learning function as retrieval-practice performance. Descriptive statistics for accuracy monitoring conditionalized on the speaker’s correct recall show a similar pattern, with listeners rating 63.4% of the speaker’s correct answers as accurate on the first retrieval-practice cycle, 77.4% on the second, and 85.6% on the third retrieval-practice cycle. Listeners, similarly to speakers, were better able to monitor accuracy with every additional retrieval-practice cycle. Additional information regarding errors that were committed during retrieval practice and accuracy monitoring can be found in the Appendix.}

Recall on the final test. Figure 2 provides mean recall on the final test, where it can be seen that a different pattern occurred on the immediate and delayed tests. No testing effect occurred on the immediate test but the effect did appear on the delayed test. Items in the monitoring condition were recalled least well on both tests. A 3 × 2 × 2 ANOVA revealed a significant main effect of practice, F(2, 280) = 53.88, MSE = 231.35, p < .001, η² = .28, indicating that recall was differently affected by retrieval practice, restudy, and the monitoring task. In addition, the ANOVA showed a significant main effect of delay, F(1, 140) = 94.21, MSE = 1238.61, p < .001, η² = .40, reflecting time-dependent forgetting. More importantly, we also found a significant Practice × Delay interaction, F(2, 280) = 8.75, MSE = 231.35, p < .001, η² = .06, which indicates that forgetting across the 2-day delay differed in the three practice conditions. Surprisingly, the ANOVA showed that performance on the final test was in no way affected by type of monitoring task (all Fs < 1.0, all ps ≥ .429). Apparently, it made no difference whether participants engaged in accuracy or fluidity monitoring. Therefore, data sets were collapsed across monitoring conditions for all further analyses.

To consider forgetting in the various practice conditions across the 2-day delay, further 2 × 2 ANOVAs were carried out. A comparison of recall after active retrieval practice and restudy again revealed a significant interaction, F(1, 142) = 13.65, MSE = 224.79, p < .001, η² = .09, reflecting differences in forgetting. Although the two practice types resulted in comparable recall after 3 min (70.7% vs. 71.8%), t(71) < 1.0, p = .652, d = 0.05, a typical testing effect was obtained after two days—retrieval practice led to greater recall than restudy (42.2% vs. 30.3%), t(71) = 4.69, p < .001, d = 0.57. A comparison of recall after restudy and monitoring across delays also revealed a significant interaction, F(1, 142) = 11.61, MSE = 258.58, p = .001, η² = .08. Although recall after the short delay was clearly superior after engaging in restudy compared to monitoring (71.8% vs. 52.6%), t(71) = 7.00, p < .001, d = 0.83, this difference was much smaller after the 2-day delay (30.3% vs. 24.0%), t(71) = 2.39, p = .020, d = 0.28, indicating that the monitoring task also reduced time-dependent forgetting relative to the restudy condition. Critically, a comparison of recall after monitoring and retrieval practice across delays showed no significant interaction and confirmed that time-dependent forgetting was comparable in the two monitoring conditions, F(1, 142) < 1.0, p = .967. Nevertheless, performance was roughly 18% worse after monitoring as compared to overt retrieval practice—after both the short delay (70.7% vs. 52.6%), t(71) = 8.05, p < .001, d = 0.97, and the long delay (42.2% vs. 24.0%), t(71) = 7.24, p < .001, d = 0.86. Although recall did certainly not benefit from monitoring to the same degree as it did from overt retrieval practice, monitoring triggered at least some degree of covert retrieval practice, which reduced time-dependent forgetting as much as overt retrieval practice did.

Discussion

The results in the retrieval practice and restudy conditions of Experiment 1 replicate prior work on the testing effect; retrieval practice compared to restudy reduced time-dependent forgetting and increased recall after a longer delay (e.g., Roediger & Karpicke, 2006). Thus, overt retrieval practice carried out in front of others boosts retention. In contrast, the results in the monitoring conditions were surprising, at least on two fronts. First, from prior work on socially shared retrieval-induced forgetting (Cuc et al., 2007), we had expected that accuracy monitoring but not fluidity monitoring would trigger covert retrieval practice. In the present data, however, no differences between monitoring tasks occurred. Second, based on previous work showing that testing effects are comparable for overt and covert forms of retrieval practice (see Putnam & Roediger, 2013; Smith et al., 2013), we had expected to observe a similar pattern of results after (overt) retrieval practice and (covert) accuracy monitoring. Yet, the data show that overt practice was much more effective than the accuracy monitoring task on both immediate and delayed tests. Although the same reduction in time-dependent forgetting occurred in the two practice conditions, monitoring another person’s retrieval practice did not entail the same mnemonic benefit as engaging in overt retrieval practice. Success rates on the first retrieval practice cycle showed that recall ranged around 17% correct after one study, so all three types of practice increased performance relative to this baseline. However, overt retrieval practice was not just more beneficial for long-term retention than restudy; it also increased recall relative to the monitoring tasks (and thus, covert retrieval).\footnote{Studies on social aspects of remembering are often discussed in terms of collective memory and the emergence of shared memories of (larger) groups of people (e.g., Hirst & Manier, 2008; Rajaram, 2011; Roediger & Abel, 2015). Indeed, the present study may speak to this issue, too, by indicating that monitoring a speaker’s retrieval can also reinforce the respective contents in a listener’s memory (see also Cuc et al., 2007, although potentially not as efficiently as overt retrieval practice.}
Although we largely modeled our study after Cuc et al.’s (2007), procedural differences exist between experiments on retrieval-induced forgetting and ours on testing effects. For instance, Cuc et al. used semantically categorized item pairs (e.g., fruit–orange) and recall during retrieval practice was supported by relatively strong retrieval cues (e.g., fruit–or__). Although success rates for retrieval-practice cycles were not reported by Cuc et al., based on other similar studies (e.g., Abel & Bäuml, 2014; Anderson et al., 1994), we may assume that retrieval success was rather high from the first retrieval-practice cycle on, perhaps even close to ceiling. In contrast, in the present study, unrelated vocabulary pairs were used as study materials, and recall of target words was only cued with stimulus words during retrieval practice. Consequently, retrieval success on the first practice cycle was only about 20% correct. As in prior testing effect experiments, we provided corrective feedback, thereby increasing retrieval success to roughly 70% on the last retrieval-practice cycle. The greater difficulty of retrieval in the present experiment due to our more difficult materials together with the presentation of corrective feedback may have made listeners in both monitoring conditions aware that they had no secure grasp of the vocabulary pairs yet and should (covertly) practice them. This conclusion seems plausible though it is post hoc. To the best of our knowledge, the Cuc et al. (2007) study is to date the only one to compare accuracy and fluidity monitoring instructions and to report mnemonic differences caused by the two monitoring tasks. The present study indicates that these differences may be restricted to certain procedures and may not generalize across all learning scenarios.

The similar rates of time-dependent forgetting after the retrieval practice and the monitoring tasks indicate that monitoring may have stimulated at least some degree of covert retrieval practice in listeners, because less forgetting occurred in both these conditions than in the restudy condition. Yet, recall was clearly superior after overt retrieval practice than after such covert practice. Why did the monitoring tasks not benefit memory in the same way as overt retrieval practice, given the evidence that overt and covert forms of retrieval practice lead to largely the same benefits in subjects working alone (see Putnam & Roediger, 2013; Smith et al., 2013; but see too Tauber et al., in press)? One potential explanation is that instructions for accuracy monitoring were not explicit enough. Following Cuc et al. (2007), subjects were asked to judge if the speaker’s answers were correct, but they were never explicitly instructed to also try to retrieve the correct answer during monitoring. Experiment 2 was conducted to determine if this same outcome would occur when subjects receive more explicit instructions to engage in covert retrieval practice during monitoring.

\[
\begin{array}{|c|c|c|c|}
\hline
\text{Delay} & \text{Retrieval Practice Cycle 1} & \text{Retrieval Practice Cycle 2} & \text{Retrieval Practice Cycle 3} \\
\hline
3\text{-min delay} & 14.2\% (14.0) & 52.8\% (21.6) & 71.1\% (21.5) \\
\hline
\text{Accuracy monitoring} & 10.3\% (11.6) & 43.9\% (24.9) & 64.7\% (24.4) \\
\hline
2\text{-day delay} & 15.0\% (17.5) & 49.2\% (23.5) & 69.2\% (22.3) \\
\hline
\text{Accuracy monitoring} & 8.3\% (13.6) & 39.7\% (26.0) & 57.8\% (28.0) \\
\hline
\end{array}
\]

Note. Recall performance = mean retrieval success of speakers during the ten trials of each retrieval practice cycle; Accuracy monitoring = the percentage of all ten trials in which the speakers’ correct responses were identified as accurate by the listeners. Values in parentheses represent standard deviations of the means.

![Figure 2](image-url)
Experiment 2

Method

Participants. 72 undergraduates at Washington University in St. Louis participated in the study in pairs and were compensated with course credit or $10. Mean age was 20.4 years (SD = 1.9 years), and subjects were evenly distributed across the two delay conditions. The study protocol was approved by the local IRB.

Material. The same study materials were used as in Experiment 1.

Design. Because Experiment 1 showed no differences between accuracy and fluidity monitoring conditions and suggested that both types of monitoring led to a certain degree of covert retrieval, we included only accuracy monitoring in Experiment 2. Apart from this change, the design was identical to Experiment 1, resulting in a 3 × 2 mixed-factorial design with the two factors of practice (retrieval practice, restudy, monitoring task) and delay (3 min, 2 days).

Procedure. The procedure was identical to that of Experiment 1, with one exception. When instructing participants to engage in the accuracy monitoring task, we explicitly asked them to engage in the same task as the speaker, just silently. Listeners were asked to also make use of this covert form of retrieval practice and to judge the speaker’s accuracy on the same 7-point scales as used in Experiment 1.

Results

Success rates on retrieval-practice cycles. Table 2 shows mean retrieval success, separately for retrieval-practice cycles and delay conditions. A 3 × 2 ANOVA revealed a significant main effect for the factor retrieval-practice cycle, F(2, 140) = 432.11, MSE = 153.77, p < .001, η² = .86. As in Experiment 1, providing feedback improved performance from the first to the second (20.8% vs. 56.1%), t(71) = 16.46, p < .001, d = 1.94, and from the second to the third retrieval-practice cycle (56.1% vs. 76.1%), t(71) = 13.63, p < .001, d = 1.61. No other main or interaction effects were significant, all Fs < 1.0, showing that there were no differences between delay conditions.

Accuracy monitoring performance. As in Experiment 1 we also analyzed performance during accuracy monitoring (see Table 2 for mean correct endorsement of accurate answers). A 3 × 2 ANOVA revealed a significant main effect for the factor retrieval-practice cycle, F(2, 140) = 338.54, MSE = 211.28, p < .001, η² = .83. Similar to retrieval-practice performance by speakers, accuracy monitoring performance by listeners improved from the first to the second (11.5% vs. 46.5%), t(71) = 13.95, p < .001, d = 1.64, and from the second to the third retrieval-practice cycle (46.5% vs. 67.6%), t(71) = 13.18, p < .001, d = 1.55. No other main effects or interactions reached significance (all Fs < 1.0), showing that there were no differences between delay conditions.

Recall on the final test. Figure 3 shows mean recall on the final test for practice conditions (retrieval practice, restudy, monitoring task) and delay conditions (3 min, 2 days). A 3 × 2 ANOVA revealed a significant main effect of practice, F(2, 140) = 18.39, MSE = 257.96, p < .001, η² = .21, indicating that recall was again differently affected by retrieval practice, restudy, and the monitoring task. In addition, the ANOVA showed a significant main effect of delay, F(1, 70) = 30.45, MSE = 1470.46, p < .001, η² = .30, reflecting forgetting over the two day retention interval. More importantly, we also found a significant interaction between the two factors, F(2, 140) = 6.06, MSE = 257.96, p = .003, η² = .08, indicating that forgetting across the 2-day delay was affected by practice format.

Further 2 × 2 ANOVAs contrasted time-dependent forgetting across practice conditions. A comparison of recall after retrieval practice and restudy again showed a significant interaction, F(1, 70) = 5.74, MSE = 267.12, p = .019, η² = .08. Whereas the two practice types caused similar recall levels after 3 min (74.2% vs. 68.9%), t(35) = 1.17, p = .250, d = 0.19, better recall after retrieval practice than after restudy was observed after the 2-day delay (48.1% vs. 29.7%), t(35) = 6.02, p < .001, d = 1.00. An ANOVA comparing recall after restudy and monitoring also revealed a significant interaction, F(1, 70) = 9.59, MSE = 305.85, p = .003, η² = .12. Although recall after the short delay was superior in the restudy compared to the monitoring condition (68.9% vs. 56.1%), t(35) = 2.71, p = .010, d = 0.45, after the 2-day delay there was a numerical disadvantage after restudy (29.7% vs. 35.0%), t(35) = 1.54, p = .134, d = 0.26. Thus, as in Experiment 1, the monitoring task reduced time-dependent forgetting relative to the restudy condition even though monitoring did not lead to reliably greater recall after a delay. Finally, a comparison of recall after monitoring and retrieval practice confirmed that time-dependent forgetting was again similar in these two practice conditions, F(1, 70) = 1.12, MSE = 200.91, p = .294, η² = .02. Irrespective of the change in instructions and subjects being explicitly asked to engage in covert retrieval practice during monitoring, recall was again clearly inferior after monitoring compared to retrieval practice—after both the short delay (74.2% vs. 56.1%), t(35) = 5.07, p < .001, d = 0.85, and the long delay (48.1% vs. 35.0%), t(35) = 4.20, p < .001, d = 0.70.

Discussion

The results of Experiment 2 replicate those of Experiment 1. Overt retrieval practice compared to restudy resulted in a typical testing effect, evident in better recall after longer delay (Pyc & Rawson, 2010; Roediger & Karpicke, 2006). Also, as in Experiment 1, engaging in accuracy monitoring again triggered at least some degree of covert retrieval practice, since the same reduction in time-dependent forgetting was observed as after overt retrieval practice. Yet even though subjects in Experiment 2 were explicitly asked to silently engage in retrieval practice when monitoring a
Table 2
Mean Recall and Accuracy-Monitoring Performance in Experiment 2 are Displayed for Retrieval-Practice Cycles 1–3, Separately for Short and Long Delay Conditions

<table>
<thead>
<tr>
<th>Delay</th>
<th>Retrieval Practice Cycle 1</th>
<th>Retrieval Practice Cycle 2</th>
<th>Retrieval Practice Cycle 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-min delay</td>
<td>Recall performance</td>
<td>20.8% (17.3)</td>
<td>56.1% (25.0)</td>
</tr>
<tr>
<td></td>
<td>Accuracy monitoring</td>
<td>12.5% (15.0)</td>
<td>46.4% (24.6)</td>
</tr>
<tr>
<td>2-day delay</td>
<td>Recall performance</td>
<td>20.7% (19.6)</td>
<td>56.1% (27.2)</td>
</tr>
<tr>
<td></td>
<td>Accuracy monitoring</td>
<td>10.6% (14.7)</td>
<td>46.7% (28.4)</td>
</tr>
</tbody>
</table>

Note. Recall performance = mean retrieval success of speakers during the ten trials of each retrieval practice cycle; Accuracy monitoring = the percentage of all ten trials in which the speakers’ correct responses were identified as accurate by the listeners. Values in parentheses represent standard deviations of the means.

Experiment 3

Method

Participants. Seventy-two students at Regensburg University participated in return for partial course credit. Mean age was 22.4 years (SD = 3.2 years). Subjects were tested in pairs and evenly distributed across the two delay conditions, n = 36 in each. The same ethical standards were used as in Experiments 1 and 2.

Material. Study materials were the same as in Experiments 1 and 2, with vocabulary meanings translated to German.

Design. The experiment again employed a 3 × 2 design with the factors of practice (retrieval practice, restudy, monitoring task) and delay (3 min, 2 days).

Procedure. The procedure was largely the same as in Experiments 1 and 2, with one exception. When instructing listeners, we now asked them to monitor their own covert retrieval performance instead of the speaker’s overt performance. Listeners were asked to silently try to recall the words. They were handed a prepared sheet with two response options (yes or no) for each practice trial and were asked to indicate whether or not they themselves were able to recall the target words. We switched to such dichotomous ratings in Experiment 3 to be able to more directly compare overt retrieval practice by speakers and covert retrieval practice by listeners. Timing of retrieval attempts by listeners was not controlled so as not to make the task more artificial. After cue presentation, listeners may have engaged in covert retrieval practice before, in parallel to, and/or after the speakers provided their overt responses.

Results

Success rates on overt retrieval-practice and covert monitoring cycles. Table 3 shows mean success rates during practice, separately for retrieval-practice cycles, monitoring cycles, and delay conditions. A 3 × 2 × 2 ANOVA revealed a significant main effect for the factor practice cycle, F(2, 140) = 352.26, MSE = 208.45, p < .001, η² = .83. Again, providing feedback improved performance from the first to the second and from the second to the third practice cycle, and this was true for both overt retrieval practice (16.3% vs. 47.1% vs. 61.3%), all ts(71) ≥ 7.28,
Recall on the final test. Figure 4 shows mean recall performance on the final test, separately for practice conditions (retrieval practice, restudy, monitoring task) and delay conditions (3 min, 2 days). To foreshadow, these results reveal a retrieval practice effect for the monitoring condition on the delayed test. A 3 × 2 ANOVA revealed no significant main effect of practice, F(2, 140) = 2.61, MSE = 236.19, p = .077, η² = .04, but a significant main effect of delay, F(1, 70) = 18.16, MSE = 1,468.33, p < .001, η² = .21, reflecting normal forgetting across the 2-day delay. We also found a significant Practice × Delay interaction, F(2, 140) = 3.46, MSE = 236.19, p = .034, η² = .05, suggesting that time-dependent forgetting differed across practice conditions.

A 2 × 2 ANOVA contrasting memory after retrieval practice and restudy again showed a significant interaction, F(1, 70) = 5.15, MSE = 237.86, p = .026, η² = .07. Recall levels were indistinguishable after 3 min (60.8% vs. 60.8%), t(35) < 1.0, but after 2 days recall was better after retrieval practice than restudy (42.5% vs. 30.8%), t(35) = 4.72, p < .001, d = 0.79. An ANOVA comparing recall after restudy and monitoring also revealed a significant interaction, F(1, 70) = 5.03, MSE = 243.57, p = .028, η² = .07. Although there was no difference after the short delay (60.8% vs. 57.5%), t(35) < 1.0, p = .397, d = 0.14, after the 2-day delay recall was better after monitoring than after restudy (39.2% vs. 30.8%), t(35) = 2.41, p = .021, d = 0.40. Finally, a comparison of monitoring and retrieval practice confirmed that time-dependent forgetting was again comparable in these two practice conditions, F(1, 70) < 1.00, MSE = 227.14, p = 1.00, η² < .001. This time, however, there was also no difference in recall levels between the two practice conditions, either after the short delay (60.8% vs. 57.5%), t(35) < 1.00, p = .359, d = 0.16, or after the long delay (42.5% vs. 39.2%), t(35) < 1.00, p = .350, d = 0.16. Thus, we found a roughly comparable retrieval practice effect in the overt and the covert (monitoring) conditions.

Table 3

<table>
<thead>
<tr>
<th>Delay</th>
<th>Retrieval Practice Cycle 1</th>
<th>Retrieval Practice Cycle 2</th>
<th>Retrieval Practice Cycle 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-min delay</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recall performance</td>
<td>18.6% (20.9)</td>
<td>48.3% (27.0)</td>
<td>60.8% (25.9)</td>
</tr>
<tr>
<td>Monitoring performance</td>
<td>20.8% (21.2)</td>
<td>50.6% (24.3)</td>
<td>65.8% (22.1)</td>
</tr>
<tr>
<td>2-day delay</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recall performance</td>
<td>15.9% (14.0)</td>
<td>45.8% (26.9)</td>
<td>61.7% (28.8)</td>
</tr>
<tr>
<td>Monitoring performance</td>
<td>15.8% (14.0)</td>
<td>44.4% (23.0)</td>
<td>57.8% (22.6)</td>
</tr>
</tbody>
</table>

Note. Recall performance = mean retrieval success of speakers during overt retrieval practice; Monitoring performance = mean success of listeners during covert retrieval practice (as indexed by their own judgments). Values in parentheses represent standard deviations of the means.

Discussion

Experiment 3 again revealed a typical testing effect, with retrieval practice causing better recall than restudy after 2 days. Importantly, however, Experiment 3 reported that covert monitoring in a social setting can be as effective as overt retrieval practice, at least if one focuses on monitoring one’s own retrieval rather than another person’s. Under these conditions, overt and covert retrieval practice can be equally useful for retention. Presumably, the changed monitoring task in Experiment 3 increased personal accountability and thus motivated listeners to engage in more effortful retrieval, which has also been suggested to increase testing effects in individual recall (e.g., Karpicke & Roediger, 2007; Maddox & Balota, 2015; Pyc & Rawson, 2009). Alternatively, one could argue that the changed monitoring task also reduced overall task demands and the necessity to divide attention between one’s own retrieval attempts and making time-limited monitoring judgments for the speaker’s performance. However, because prior work has shown that divided attention decreases the efficiency of restudy, but not of retrieval practice (Gasperlin, Ruthruff, & Pashler, 2013; Mulligan & Picklesimer, 2016), this...
The present experiments investigated the testing effect in a social context, addressing whether listening to and monitoring another person’s reports can entail similar benefits for listeners as for speakers. Although two separate lines of prior research had indicated that this might be the case (see Cuc et al., 2007; Putnam & Roediger, 2013; Smith et al., 2013), the present experiments showed that listening to another person’s retrieval reports is not equally beneficial as engaging in overt retrieval practice oneself. Monitoring another person’s retrieval practice decreased time-dependent forgetting as much as overt retrieval practice (relative to a restudy condition), but overt retrieval practice was still more beneficial for recall than monitoring. In fact, relative to restudy, monitoring did not boost performance at all. Importantly, this outcome emerged irrespective of whether listeners were explicitly asked to engage in covert retrieval practice along with speakers (in Experiment 2) or not (in Experiment 1). We only obtained a significant effect of monitoring relative to restudy in Experiment 3 when we asked listeners to focus on their own covert retrieval practice (relative to a restudy condition), but overt retrieval was required (in Experiment 3). Overall, this outcome indicates that effortful retrieval along with speakers (e.g., Cuc et al., 2007; Koppel et al., 2014), and it is also consistent with the retrieval effort hypothesis of the testing effect (Pyc & Rawson, 2009), derived from the desirable difficulties framework (Bjork, 1994, 1999). Although monitoring another person’s performance may also trigger some covert retrieval practice in listeners, such monitoring judgments can be made without investing too much effort (e.g., by recognition evaluations alone, and these might be based in part on familiarity of the answer rather than recollection). In contrast, monitoring one’s own learning must encourage active retrieval and recollection, and thus, much more effortful processes that have been shown to benefit learning more than recognition judgments (e.g., Carpenter & DeLosh, 2006; Kang et al., 2007; see also Rowland, 2014). In the present study, covert retrieval practice only enhanced recall relative to restudy when such effortful retrieval was required (in Experiment 3). Overall, this outcome indicates that effortful retrieval may not only benefit retention of individuals practicing in isolation, but also when retrieval practice is employed in a social setting. Yet, because participants in Experiment 3 also differed in nationality—they were German—further research should examine the robustness of the finding. Of course, given the results of Putnam and Roediger (2013) and Smith et al. (2013), we strongly doubt that the differing nationalities and languages of uni-
versity students represents the critical difference in the results of Experiment 3 relative to that of the earlier experiments.

Pashler, Kang, and Harris (2012) have conducted research in both lab and classroom settings asking if teachers’ questions to a whole class may induce covert retrieval practice and hence benefit all students rather than only the student who answers the question overtly. The inspiration for their experiment came from a California school that greatly improved students’ performance by adopting a procedure that put all students in every class “on the hook” for questions. That is, students each had an assigned number for class and the teacher would ask a question, wait, and then call on one student at random (and then sample with replacement, so the student could be called on again in the same session). Thus, all students were “on the hook” and had to try to think of the answer to the question in preparation for the possibility of being called upon. Of course, the principal who instituted this reform also made other changes, but the teachers and principal attributed a large portion of their success to this universal possibility of being called upon. Of course, the principal who instituted this technique for encouraging effortful processing in other students unless the teacher tries to make each student potentially responsible to provide an answer. Students apparently do not naturally exert effort to do so, even when they are asked to monitor another student’s answers.

References

Abel, M., & Bäuml, K.-H. T. (2015). Selective memory retrieval in social groups: When silence is golden and when it is not. *Cognition, 140*, 40–48. http://dx.doi.org/10.1016/j.cognition.2015.03.009

Appendix

Errors During Retrieval Practice and Accuracy Monitoring

In the main text, we reported average correct performance of speakers on retrieval practice cycles and the percentage of trials on each cycle for which listeners rated the correct answers given by speakers as accurate. Naturally, however, speakers sometimes made mistakes when trying to recall vocabulary pairs during retrieval practice, and listeners may have made additional mistakes by rating the speakers’ incorrect answers as accurate (or their correct answers as inaccurate). For reasons of completeness, we will provide descriptive statistics for the occurrence of such errors in the following section, separately for each experiment. It should be noted, however, that analyzing errors will not enable strong conclusions about covert retrieval-practice performance by listeners (e.g., even for cases in which listeners correctly rejected a speaker’s incorrect response as inaccurate, it cannot automatically be assumed that listeners were able to retrieve the correct answer themselves).

Experiment 1

Errors by Speakers

In Experiment 1, speakers committed on average 3.36 errors during retrieval practice (SD = 4.02). This corresponds to 11.2% of all 30 retrieval-practice trials. Extralist intrusions from items that were never studied were less common (across all 30 retrieval-practice trials: M = 0.93, SD = 1.56) compared to intralist intrusions from items that were studied but incorrectly paired with a different Swahili cue (M = 2.47, SD = 2.92). The mean number of extralist intrusions decreased from the first retrieval-practice cycle (M = 0.68, SD = 1.18) to the second retrieval-practice cycle (M = 0.17, SD = 0.44), t(71) = 4.06, p < .001, with no major change occurring from the second to the third retrieval-practice cycle (M = 0.10, SD = 0.38), t(71) = 1.15, p = .254. In contrast, mean number of intralist intrusions was relatively low on the first retrieval-practice cycle (M = 0.43, SD = 0.78), increased on the second retrieval-practice cycle (M = 1.06, SD = 1.31), t(71) = 4.91, p < .001, and stayed on this level on the third retrieval-practice cycle (M = 0.99, SD = 1.37), t(71) < 1.0, p = .638.

Error Detection by Listeners

Out of the 3.36 (SD = 4.22) errors that were on average committed by speakers, listeners caught a mean of 1.67 errors (SD = 2.38) by correctly rating them as inaccurate. Thus, listeners caught 49.7% of all errors that were committed by speakers, presumably before being exposed to corrective feedback on the screen. Yet, listeners committed on average 0.54 errors of their own (SD = 1.14). In particular, listeners rated on average 0.38 (SD = 0.96) incorrect answers as accurate and 0.17 (SD = 0.41) correct answers as inaccurate.

(Appendix continues)
Experiment 2

Errors by Speakers

In Experiment 2, speakers committed on average 2.11 (intralist and extralist) errors ($SD = 2.17$), corresponding to 7% of all 30 retrieval-practice trials. Again, extralist intrusions were less common (across all 30 retrieval-practice trials: $M = 0.49, SD = 0.90$) than intralist intrusions ($M = 1.63, SD = 1.67$). In parallel to Experiment 1, extralist intrusions decreased from the first retrieval-practice cycle ($M = 0.32, SD = 0.71$) to the second retrieval-practice cycle ($M = 0.10, SD = 0.38$), $t(71) = 2.38, p = .020$, with no major change occurring from the second to the third retrieval-practice cycle ($M = 0.10, SD = 0.38$), $t(71) = 1.0, p = .531$. In contrast, mean number of intralist intrusions was relatively low on the first retrieval-practice cycle ($M = 0.39, SD = 0.72$), increased on the second retrieval-practice cycle ($M = 0.74, SD = 0.96$), $t(71) = 2.67, p = .009$, and did not decrease substantially on the third retrieval-practice cycle ($M = 0.50, SD = 0.84$), $t(71) = 1.85, p = .068$.

Error Detection by Listeners

Out of the mean number of 2.11 ($SD = 2.17$) errors committed by speakers, listeners caught on average 1.14 errors ($SD = 1.89$) by correctly rating them as inaccurate. Thus, listeners caught 54.0% of all errors that were committed by speakers, presumably before they were exposed to corrective feedback. Listeners themselves committed on average 0.36 errors ($SD = 0.72$). In particular, listeners rated 0.15 ($SD = 0.42$) incorrect answers as accurate and 0.21 ($SD = 0.47$) correct answers as inaccurate.

Experiment 3

Errors by Speakers

In Experiment 3, speakers committed on average 2.72 (intralist and extralist) errors ($SD = 2.64$), corresponding to 9% of all 30 retrieval-practice trials. Again, extralist intrusions were less common (across all 30 retrieval-practice trials: $M = 0.35, SD = 0.72$) than intralist intrusions ($M = 2.42, SD = 2.41$). As in both previous experiments, extralist intrusions decreased from the first retrieval-practice cycle ($M = 0.25, SD = 0.55$) to the second retrieval-practice cycle ($M = 0.07, SD = 0.26$), $t(71) = 2.71, p = .008$, but no change occurred from the second to the third retrieval-practice cycle ($M = 0.04, SD = 0.20$), $t(71) < 1.0, p = .418$. In contrast, mean number of intralist intrusions was lowest on the first retrieval-practice cycle ($M = 0.44, SD = 0.67$), increased on the second retrieval-practice cycle ($M = 0.94, SD = 1.20$), $t(71) = 3.38, p = .001$, and roughly stayed the same on the third retrieval-practice cycle ($M = 1.00, SD = 1.21$), $t(71) < 1.0, p = .700$.

Received May 17, 2017
Revision received August 9, 2017
Accepted August 19, 2017