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We examined 3 different network models of representing semantic knowledge (5,018-word directed and
undirected step distance networks, and an association-correlation network) to predict lexical priming effects.
In Experiment 1, participants made semantic relatedness judgments for word pairs with varying path lengths.
Response latencies for judgments followed a quadratic relationship with network path lengths, replicating and
extending a recent pattern reported by Kenett, Levi, Anaki, and Faust (2017) for an 800-word association-
correlation network in Hebrew. In Experiment 2, participants identified target words in a progressive
demasking task, immediately following a briefly presented prime (120 ms). Response latencies to identify the
target showed a linear trend for all network path lengths. Importantly, there were statistically significant
differences between relatively distant words in the step distance networks, for example, path lengths 4 and
beyond, suggesting that association networks can indeed capture distant functional semantic relationships.
Additional comparisons with 2 distributional models (LSA and word2vec) suggested that distributional
models also successfully predicted response latencies, although there appear to be fundamental differences in
the types of semantic relationships captured by the different models.
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Understanding language requires the retrieval of meaning from
underlying semantic representations of words. A standard model of
retrieving meaning from semantic memory involves a spread of
activation, such that activation spreads from one concept to related
concepts along associative/semantic pathways (e.g., Collins &
Loftus, 1975; Collins & Quillian, 1969). A common finding that
directly follows from the spreading-activation account is that pro-
cessing a particular word (e.g., cat) facilitates processing of a
related word (e.g., dog), a phenomenon referred to as semantic
priming (see Plaut, 2002, for an alternative feature-based model of
semantic priming). Semantic priming has been found in a variety
of tasks, such as lexical decision, sentence verification, and word
pronunciation (see McNamara, 2005; Neely, 1991 for reviews).

There is some evidence that semantic priming can extend to two
or three steps within a network (e.g., lion-tiger-stripes). For ex-

ample, Balota and Lorch (1986) used a mediated priming pronun-
ciation task to show that response latencies to pronounce a target
word (e.g., stripes) were faster following a directly related prime
(e.g., tiger), which were faster than a mediated prime (e.g., lion),
which in turn were faster than an unrelated prime (e.g., sand).
McNamara and Altarriba (1988) extended this work and provided
evidence for multiple-step priming in a lexical-decision task. Im-
portantly, in each of these studies, semantic steps within a network
were not based on an a priori model of semantic memory but were
based on items selected by the experimenters that appeared to have
no direct relationship for the mediated pairs (e.g., lion and stripes)
but did have direct relationships with the mediators (e.g., lion to
tiger and tiger to stripes). More recently, Jones and Mewhort
(2007) showed that mediated pairs such as those discussed
above are in fact closer in a computational semantic space
within a random vector accumulation model (i.e., BEAGLE).
Thus, although mediated or two-step priming effects have been
obtained and afforded considerable theoretical discussion, there
has been relatively little work investigating priming effects for
more distant relationships, based on a priori defined network
configurations.

Understanding priming effects for more distant concepts re-
quires an independent specification of the underlying network
representation of these concepts. Recent graph theoretical ap-
proaches to knowledge representation afford a class of semantic
network models, which represent words as nodes in a large mem-
ory network, where words with similar meanings are connected to
each other via edges (see Steyvers & Tenenbaum, 2005). This
approach of representing memory structures using graph theoret-
ical methods is being increasingly used to study the large-scale
structure of language and memory. For example, Steyvers and
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Tenenbaum (2005) constructed three types of semantic networks
based on the Nelson association norms (Nelson, McEvoy, &
Schreiber, 2004), WordNet (Fellbaum, 1998; Miller, 1995) and
Roget’s thesaurus (Roget, 1911), and showed that each semantic
network followed a small-world structure (Barabási & Albert,
1999; Strogatz, 2001), similar to several naturally occurring com-
plex networks such as the World Wide Web (Albert, Jeong, &
Barabási, 2000; Barabási & Albert, 1999; Watts & Strogatz, 1998).
Additionally, Steyvers and Tenenbaum (2005) proposed a mech-
anism for language acquisition based on semantic growth and
preferential attachment, which proposed that new concepts attach
to already existing concepts that have more connections with other
concepts in the network. Graph theoretical methods-based research
has also been extended to speech production and lexical retrieval
(Chan & Vitevitch, 2010; Vitevitch, Chan, & Goldstein, 2014),
creativity (Kenett, Anaki, & Faust, 2014), memory retrieval (Vite-
vitch, Chan, & Roodenrys, 2012), and similarity judgments (De
Deyne, Perfors, & Navarro, 2016).

De Deyne, Navarro, Perfors, and Storms (2016) have recently
examined how individuals assess similarities between weakly re-
lated words using a semantic network approach. In their study,
participants were presented with word triads (e.g., butter, train,
and saddle) and asked to indicate which two words were most
related. Their results indicated that there was systematic consis-
tency in participant responses to seemingly unrelated word triads
(e.g., most participants indicated that train and saddle were more
related). Further, De Deyne et al. provided evidence that these
similarities were most successfully captured through a spreading
activation mechanism operating over a word association network,
compared to other similarity measures based on local neighbors.
Importantly, this work introduced a novel method of assessing
similarity between distant concepts. However, to our knowledge,
there is relatively little work examining the extent to which such
network-based representations account for semantic priming per-
formance, the most widely studied paradigm to examine semantic
representation and processes.

In a particularly relevant study, Kenett et al. (2017) recently
used a semantic relatedness task to explore the impact of semantic
network path length derived from an 800-word Hebrew mental
lexicon on priming. The Hebrew Association-Correlation Network
(ACN) was created using graph theoretical methods and correla-
tions derived from continuous free-association responses of 60
participants to 800 target words (for complete methodology, see
Kenett, Kenett, Ben-Jacob, & Faust, 2011). This type of represen-
tation (described further below) combines both distant network
connections (as reflected by correlations in association responses)
as well as direct semantic relationships and thus represents a more
hybrid model of semantic memory. In order to test the viability of
this network structure, Kenett et al. (2017) had participants make
relatedness judgments for word pairs chosen from this Hebrew
network with varying path lengths. They found that as network
path length between the word pairs increased, fewer word pairs
were judged as related. Importantly, they also reported a quadratic
relationship between network path length and response times
(RTs) to make relatedness judgments, such that RTs increased for
word pairs at shorter path lengths, but after path length 3, RTs
systematically decreased for longer path lengths. This quadratic
pattern likely reflected demands of the relatedness judgment task.
Specifically, path length 1 was likely more clearly related than

path length 2, while path length 3 was most ambiguous and hence
produced the slowest response latencies. Importantly, Kenett et al.
reported significant differences in RTs for items that were 4- and
6-steps apart. This pattern suggests that priming can potentially
extend to relatively distant connections, that is, to path lengths 4
and beyond for word pairs that are consistently judged as unre-
lated. They also showed that this network outperformed a popular
distributional model, Latent Semantic Analysis (LSA; Deerwester,
Dumais, Furnas, Landauer, & Harshman, 1990; Landauer & Du-
mais, 1997) in explaining task performance. However, given that
Kenett et al. used an association-correlation methodology based on
a relatively small network of Hebrew words, it remains unknown
whether other association networks (e.g., Steyvers & Tenenbaum,
2005) could also capture such distant semantic relationships at similar
levels as the ACN. Moreover, it is important to extend the Kenett et
al. network structure to a larger English-based network analysis to
examine the generalizability of their findings.

The present set of experiments were designed to address three
specific questions. First, we were interested in examining the
extent to which the patterns of multiple-step priming reported by
Kenett et al. in the Hebrew semantic distance task would replicate
in a much larger semantic network in English, using the Kenett et
al. network structure. We created this network from a large 5,018-
word database of free association norms collected by Nelson et al.
(2004) and examined the extent to which path lengths predict task
performance, after controlling for lexical variables such as word
frequency, length, concreteness and lexical decision times ex-
tracted from the English Lexicon Project (ELP; Balota et al.,
2007). In our first experiment, following Kenett et al.’s procedure,
participants were briefly presented a prime word for 120 ms, and
then a target word for a relatedness decision. We examined
whether network path length between the prime and target words
predicted the extent to which a word pair was judged as related or
unrelated and whether the response latencies to make these judg-
ments varied as a function of path length. If semantic network
parameters from the ACN indeed predict performance, we should
see an influence of path length on response latencies and replicate
the quadratic relationship between path length and RTs, as de-
scribed by Kenett et al. (2017).

Second, it is important to extend the Kenett et al. results to a
different experimental paradigm that does not specifically direct
attention to semantics, as in relatedness judgments. Specifically, a
potential concern regarding semantic networks created through
human association norms is a type of circularity; that is, the
success of association networks in explaining relatedness data
could be due to shared variance with the task. In particular, Jones,
Hills, and Todd (2015) have argued that responses in a free
association task are an outcome of a retrieval operation on an
underlying semantic representation, and their predictive success in
behavioral tasks may simply reflect the similarity between the
experimental task (e.g., verbal fluency or relatedness judgments)
and the free association task itself. Thus, it is possible that the
quadratic relationship observed in Kenett et al. (2017) may reflect
the specific nature of the relatedness judgment task; that is, as
noted above, the quadratic relationship likely reflects differences
in how the “distance” between any two words might influence the
“related” versus “unrelated” decisions in this task and how indi-
viduals partition items into the two categories. We addressed this
concern by employing a task that does not demand access to
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semantic information in an explicit manner to make a response.
Thus, in Experiment 2, participants first viewed a briefly presented
prime (120 ms) and then identified targets through progressive
demasking, a task that does not require directly attending to the
relationship between the prime and target, and therefore removes
the arbitrary distinction between related and unrelated word pairs.
If network path length is indeed a measure of multiple-step se-
mantic priming, we would expect to see response latencies to
identify the target increase as the path length between prime and
target words increases.

Finally, as noted above, we explored whether Step Distance
Networks (SDNs) can also successfully capture semantic priming
between relatively distant concepts. Given that the Kenett et al.
network methodology involves computing correlations between
word associations, it possibly captures more indirect associations
between the words, unlike the direct associations captured by
SDNs, such as those described by Steyvers and Tenenbaum
(2005). In this light, one might consider the Kenett et al. structure
to be a hybrid of network structure and latent structure. Thus, we
compared the relative performance of two SDNs (Undirected and
Directed) and the hybrid ACN created using the Kenett et al.
methodology in Experiments 1 and 2. In the Directed SDN, words
a and b were connected with an edge only if the word a evoked the
word b as a response during free association, whereas in the
Undirected SDN, words a and b were connected independent of
the associative direction, as long as either of the words were
produced as a response to the other word. In this way, we were
able to examine the relative predictive power of each of these
different network configurations in capturing any observed prim-
ing effects in two different behavioral tasks.

Experiment 1

Method

Network construction. To construct the semantic networks,
we used the 5,018-word database of free-association norms col-
lected by Nelson et al. (2004), in which 150 participants on
average wrote down the first word that came to mind in response
to approximately 120 word cues across a series of studies. We
constructed three networks from this database: the ACN, Undi-
rected SDN, and the Directed SDN.

Association-correlation network (ACN). The ACN was cre-
ated based on the methodology described by Kenett et al. (2011).
Associative responses to 5,018 cue words were first converted into
a matrix in which each column represented a cue word, and each
row indicated unique associative responses for the target words.
This matrix was converted to an association-correlation matrix,
where the correlations between two target word profiles (i.e., the
words produced to the two targets) were calculated based on the
Pearson formula. This correlation matrix was converted into a
weighted, undirected network, such that each target word was a
node in the network, and the correlation between two target words
represented the weight of the edge between them. This fully
connected network was then reduced to a Planar Maximally Fil-
tered Graph (PMFG; Tumminello, Aste, Di Matteo, & Mantegna,
2005). The PMFG algorithm is an information-filtering approach
used to control for spurious correlations in correlation-based net-
works. PMFG draws edges between nodes by first sorting all the

correlations in descending order and only adding those edges to the
graph that allow the resulting network to be embedded onto a
sphere. This forms a planar network (a network in which no edges
cross each other) with the same number of nodes, nodes but only
those edges that represent the most relevant associations between
target words. This unbiased topological constraint preserves more
information compared to other network filtering approaches like
the Minimum Spanning Tree (Tumminello et al., 2005) and has
been applied to study semantic memory structure in clinical
(Christensen, Kenett, Aste, Silvia, & Kwapil, 2018), and nonclini-
cal populations (Borodkin, Kenett, Faust, & Mashal, 2016; Kenett
et al., 2014). Path lengths between word pairs were then calculated
as the shortest path from one word to another in this smaller PMFG
network. Figure 1 (Top panel) displays a large-scale visualization
of the ACN, and Figure 2 (Left panel) displays the 6-step shortest
path from RELEASE to ANCHOR.

Undirected and directed step distance networks (SDNs).
Following Steyvers and Tenenbaum (2005), in the Directed SDN,
two words (a and b) were connected by an edge if the word a
evoked the word b as an associative response for at least two
participants in the Nelson database. If there was no directed
association between two words in the Directed SDN, there was no
edge between those two words. In the Undirected SDN, words
were connected if the words were produced in response to each
other, independent of the associative direction. Path lengths for

Figure 1. Large-scale visualization of the association-correlation net-
work (top), undirected (middle) and directed (bottom) step distance net-
works. See the online article for the color version of this figure.
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each word pair in the network were calculated as the shortest
number of steps from one word to another. Figures 1(Middle and
bottom panels) and 2 (Middle and right panels) display visualiza-
tions of the two SDNs and the shortest paths from RELEASE to
ANCHOR.

Network comparisons. Table 1 displays the network parame-
ters for the three networks. As is evident from the large-scale
visualizations, the ACN is sparser than the SDNs, with a greater
clustering coefficient (an index of network connectivity, i.e., the
extent to which neighborhoods of neighboring nodes overlap) and
longer average path lengths, indicating more indirect, conceptual
associations compared to the direct associations captured by SDNs
which had shorter path lengths overall.

Table 2 displays the correlation among the path lengths derived
from each of the networks for the sets of words used in our
experiments, along with information about some additional net-
works that are described later (see General Discussion). As is clear
from these correlations, there are considerable differences across
the different types of network configurations (as displayed in
Figure 1) and the relationships they capture (as shown in Figure 2).
As shown in Figure 1, the correlation-based method used to create
the ACN leads to a very sparsely connected network in which
obscure, higher-level associations are closely represented (e.g.,
TRAGEDY-REMORSE is 1 step away), whereas several direct

(e.g., VOLCANO-ASH is 15 steps away) and mediated associa-
tions (e.g., LION-STRIPES is 38 steps away) appear to be have
exaggerated distances. It is likely that the planarity criterion im-
posed during network construction for the ACN causes several
direct associations to be dropped, primarily retaining indirect,
higher-level conceptual relationships, an issue we return to in the
General Discussion. This also produces the irregular shape of the
network, as shown in Figure 1, where higher-level conceptual
representations produce the branch-like structure, a pattern also
displayed in the Kenett et al. model of Hebrew word associations.
Additionally, we also see some path-based differences between the
Undirected and Directed SDNs. Specifically, the Directed SDN
had slightly longer paths compared to the Undirected SDN, which
may capture results from tasks that involve forward or backward
association. Overall, however, path lengths derived from the two
SDNs were very highly correlated, suggesting that the directed and
undirected associative networks largely overlap in their network
structure and differ from the ACN.

Participants. Forty Amazon Mechanical Turk users (Mage �
36 years, SD � 11.3) were recruited online, and an additional 40
undergraduate students (Mage � 20 years, SD � 1.2) were re-
cruited from Washington University in St. Louis. Amazon Me-
chanical Turk users were paid $3.75 for their participation, and
Washington University students received course credit for partic-

Figure 2. Shortest path from RELEASE to ANCHOR in the association-correlation network (left), undirected
(middle) and directed (right) step distance networks. See the online article for the color version of this figure.

Table 1
Summary Statistics for Semantic Networks

Step distance networks (SDNs) Association-correlation networks (ACNs)

Variable Undirected SDN Undirected PMFG Directed SDN ACN PMFG Unfiltered ACN Filtered ACN.1 Hebrew ACN

n 5018 5018 5018 5018 5018 5018 800
k 22 5.99 12.7 5.85 5018 95.19 5.94
L 3.04 12.5 4.27 23 1 2.45 10
D 5 27 10 61 1 4 25
C 0.186 0.72 0.186 0.69 1 0.26 0.68
Lrandom 3.03 1.95 4.26 1.95 3.03 — 3.94
Crandom 0.004 0.05 0.004 0.05 0.004 — 0.005

Note. n � the number of nodes; k � the average number of connections; L � the average shortest path length; D � the diameter of the network; C �
clustering coefficient; Lrandom � the average shortest path length with random graph of same size and density; Crandom � the clustering coefficient for a
random graph of same size and density; PMFG � Planar Maximally Filtered Graph.
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ipation. Mean score on the Shipley Vocabulary Test was 31.62
(SD � 6.69) for the Mechanical Turk Users and 30.78 (SD � 3.65)
for the Washington University students. Mean years of education
was 14.68 (SD � 2.72) for the Mechanical Turk Users and 14
(SD � 1.36) for the Washington University students. All except
two participants were self-reported native English speakers, and
their performance on the task did not differ from the group aver-
age, and thus the final sample included all 80 participants. This and
the following experiment were approved by the Institutional Re-
view Board at Washington University in St Louis.

Materials. Because we initially wanted to extend and repli-
cate the Kenett et al. study, we followed their general procedure
and randomly sampled 40 word-pairs from path lengths 1, 2, 3, 4,
6 and 15 from the ACN. Although Kenett et al. used a single list,
in order to increase generalizability, we created five different lists,
with each list created using the same procedure. The stimuli thus
consisted of 1,200 distinct word-pairs across the 5 lists. The primes
and targets in these lists were then counterbalanced across partic-
ipants for order of presentation. For each word-pair sampled from
the ACN, we also obtained corresponding path lengths in the
Undirected and Directed SDNs.

Procedure. The relatedness task was developed using JS-
Psych (de Leeuw, 2015), an online software for conducting psy-
chological experiments. Each participant received a link to the
experiment and completed the experiment online. Participants
received task instructions and were guided through 10 practice
trials. We also included 15 buffer trials before the actual experi-
ment, which were removed from final analyses. Following Kenett
et al., on each trial, participants saw a fixation cross for 200 ms,
followed by a blank screen for 100 ms. The prime was then briefly
presented for 120 ms, followed by the target for 120 ms. Partici-
pants decided whether the prime and target were related or unre-
lated and indicated their response by pressing a button (key “K” or
“L” on the keyboard). The order of using “K” for related and “L”
for unrelated was counterbalanced across participants. After re-
sponding, participants saw a blank screen for 500 ms before
proceeding to the next trial.

Results

There were no significant differences in overall patterns for the
sample recruited from Amazon Mechanical Turk and the sample
recruited from Washington University in St Louis. Further, the
specific lists also did not influence the overall patterns. Therefore,
all reported results contain the full sample of 80 participants across
all five lists.

Effect of ACN path length on RTs. To minimize the undue
influence of extremely fast or slow RTs in our analyses, each
individual’s RTs were screened in the following manner for all
analyses. First, RTs faster than 250 ms and slower than 2,000 ms
were removed. Second, a mean and standard deviation were cal-
culated from the remaining trials for each participant and any RTs
that exceeded 3 standard deviations (SDs) from the participant
mean were also removed. This process excluded 5.4% of the total
trials. After this trimming procedure, we standardized the remain-
ing trials within each participant and conducted all primary anal-
yses using trial-level standardized RTs, to minimize any effects of
general slowing and individual differences across participants (see
Faust, Balota, Spieler, & Ferraro, 1999).

In order to exactly replicate the analytic procedures reported by
Kenett et al., each of the path lengths were either classified as
related or unrelated based on the percentage of related and unre-
lated responses to the specific word-pairs in each path length.
Figure 3 (Top panel) displays percentage of related and unrelated
responses in each path length for the ACN as well as the Kenett et
al. data (Experiment 2). As shown, the present results closely
replicated the patterns reported in Kenett et al. (2017), although it
is important to note that the difference in proportions between the
related and unrelated pairs at different path lengths were less
extreme in our study compared to Kenett et al., an issue we return
to in the Discussion. Based on these percentages and the criterion
of at least 50% of words producing a related response, only
word-pairs corresponding to path length 1 were classified as re-
lated, and all other path lengths were classified as unrelated.

A path length (1, 2, 3, 4, 6, 15) repeated measures Analysis of
Variance (ANOVA) was conducted to examine the effect of path
length on mean standardized reaction times (zRTs) at the partici-
pant level. Following Kenett et al., only successful trials were
analyzed, based on the a priori and post-priori classification of
related or unrelated paths, described above. We observed a signif-
icant main effect of path length, F(5, 395) � 7.42, p � .001, �p

2 �
.09. Post hoc analyses revealed that zRTs significantly increased
from path length 1 to 2 (p � .006) and then decreased from path
lengths 2 to 6 (p � .001). zRTs also significantly decreased from
path lengths 4 to 15 (p � .015). No significant differences between
zRTs were found when path length increased from 3 to 4, or 4 to
6, or 6 to 15. As shown in Figure 3 (Bottom panel), we success-
fully replicated the quadratic pattern reported by Kenett et al. for
RTs as a function of path length in the ACN, although the present
function is more muted compared to their results.

Next, to avoid the exclusion of trials based on whether they were
judged as related or unrelated at different path lengths, we included
response type (whether an item was judged as related or unrelated)
as a predictor in a linear mixed effects (LME) analysis. We also
controlled for lexical variables such as word frequency, length,
concreteness, and standardized lexical decision times by perform-
ing the LME with random intercepts at the participant, item, and

Table 2
Correlation Matrix of Network Path Lengths and word2vec
Cosines for Items in Experiments 1 & 2

Semantic model ACN
Undirected

SDN
Directed

SDN
LSA

cosines
word2vec
cosines

Experiment 1

ACN 1 — — — —
Undirected SDN 0.48 1 — — —
Directed SDN 0.33 0.57 1 — —
LSA cosines �0.28 �0.45 �0.39 1 —
word2vec cosines �0.37 �0.55 �0.44 0.59 1

Experiment 2

ACN 1 — — — —
Undirected SDN 0.49 1 — — —
Directed SDN 0.37 0.58 1 — —
LSA cosines �0.36 �0.51 �0.41 1 —
word2vec cosines �0.46 �0.55 �0.46 0.64 1

Note. SDN � step distance network; ACN � association-correlation
network; LSA � Latent Semantic Analysis.
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trial level. Lexical characteristics (mean frequency, length, con-
creteness, and standardized lexical decision times) for each of the
words in the experiment were obtained from the ELP (Balota et al.,
2007), and included as covariates in our analyses. Importantly, we
observed a significant interaction between path length and re-
sponse type (related or unrelated), after controlling for item char-
acteristics (�AIC � 34 for the model with and without interaction
term, p � .001). Specific contrasts also revealed a significant
difference in zRTs between path lengths 1-related and 2-unrelated
(p � .001), and also a significant difference between 6-unrelated
and 15-unrelated (p � .013). Figure 4 displays zRTs as a function
of network path lengths for successful trials1. Additionally, we
also specifically tested for the presence of a quadratic trend in the
zRTs and found that the quadratic model was significant and
explained more variance than the linear model (�AIC � 4, p �
.014). Thus, the quadratic trend persisted after controlling for type
of relatedness decision as well as item-level differences. In order
to ensure that using lexical decision latencies as a covariate was
not potentially influencing the results, we also conducted an anal-
ysis without this covariate, and the same pattern was observed.
Figure 5 displays the full data for the relatedness decisions as a
function of network path length in the ACN, because plotting only
“successful” trials based on an arbitrary threshold may mask
important differences in the pattern of zRTs for “related” and
“unrelated” items at the different path lengths. Interestingly, zRTs
for “related” word pairs systematically increased with longer path
lengths, indicating slower processing for these distant items.

Effect of step distance network path lengths on zRTs. In
addition to the ACN, as noted, we also created two SDNs based on

the method used in Steyvers and Tenenbaum (2005). We examined
the effect of path lengths derived from the Undirected and Directed
SDNs on zRTs in the relatedness task. Because the SDNs had a
more compact and densely connected representation (as seen in
Figure 1), path lengths ranged from only 1–5 in the Undirected
SDN and from 1–8 in the Directed SDN. Due to extremely few
data points in the higher path lengths in the directed network, we
collapsed all items at path lengths greater than 5 (i.e., 120 in PL6,
19 in PL7, 4 in PL8, and 97 items with no paths) into one path
length in our analyses. As shown in Figure 4, both the Undirected
and Directed SDNs also showed a quadratic trend for zRTs as a
function of path length, with zRTs significantly rising from path
lengths 1 to 2 (p’s � .001) and then reliably decreasing from path
length 2 onward. Importantly, we observed a significant decline in
zRTs from path lengths 3-unrelated to 4-unrelated in the Undi-
rected (p � .001) and from path lengths 2-unrelated to 5-unrelated
in the Directed SDN (p � .001). Figure 5 also shows the full data
for the relatedness decisions as a function of SDN path lengths.

Discussion

The results from Experiment 1 provide strong evidence for
distant priming in the relatedness judgment task, and also demon-
strate a quadratic relationship between network path length and
zRTs to judge a word-pair from the network as related or unre-

1 Following Kenett et al. (2017), Figure 4 displays standardized zRTs for
only “correct” responses, i.e., RTs for related responses for path length 1
in all networks, and zRTs for unrelated responses for all other path lengths.

Figure 3. Percentage of related and unrelated responses (Top panel) and response times for relatedness
judgments (Bottom panel) in Experiment 1 and Kenett et al. (2017). Error bars represent standard deviations. See
the online article for the color version of this figure.
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lated. As network path length between the words increased, more
word-pairs were judged as unrelated, and response latencies first
increased until path length 2, and then systematically decreased for
more distant path lengths. These results replicate and extend the
pattern observed by Kenett et al. (2017) for the Hebrew network.
Importantly, we found significant differences between zRTs at
distant path lengths, specifically path lengths 6 and 15 in the ACN,
after controlling for item-specific lexical characteristics. This sug-
gests that one can observe priming across quite distant relation-
ships within this paradigm.

There were also some notable differences between our findings
and those of Kenett et al. (2017). First, as shown in Figure 3 (Top
panel), the difference in the proportion of participants who judged
the word-pairs as related or unrelated at different path lengths was
less extreme for our English word-pairs, compared to the Hebrew
word-pairs used by Kenett et al. (2017). It is important to note that
the word-pairs in our study were randomly sampled across 5 lists
from the ACN, whereas Kenett et al. sampled only one set of 240
items for their study and matched the items for length, frequency
and concreteness. In contrast, we used these variables as covariates
in our analyses to reduce the possibility of potential item-selection
effects (see Forster, 2000). Second, we found that word-pairs at
path length 2 were judged as related and unrelated by a statistically
equivalent proportion of participants, and the response latencies to
make relatedness judgments were slowest for path length 2, com-
pared to other path lengths in the network. Of course, this suggests
that these items at path length 2 were most ambiguous regarding
relatedness and hence produced the slowest response latencies.
Kenett et al. observed the slowest RTs for path length 3 and argued
that the breadth of spreading activation is at least 3 steps. Our
findings differ in this regard, as we not only find that significant
differences at shorter path lengths, that is, between 1 and 2, but
more importantly capture differences between even longer path
lengths (i.e., 6 and 15) in the network, compared to Kenett et al.
where they found significant differences only between path lengths
4 and 6, and not beyond.

In addition to replicating the pattern observed by Kenett et al.
(2017), we provide strong evidence that directional and nondirec-
tional SDNs can also capture similar distant semantic relationships
between concepts. However, it is important to acknowledge that
the distribution of word-pairs corresponding to each of the undi-
rected and directed path lengths was not the same because our
sample was created to ensure equal number of items in each path
length, specifically for the ACN. Further, as shown in Figure 6,
“distant” items in the ACN (i.e., path lengths 6 and 15) did not
consistently correspond to distant items in the SDNs; that is, over
50% of the items in each ACN path length did not correspond to
the same path lengths in the Undirected and Directed SDNs. This
is noteworthy, as it indicates that the ACN potentially exaggerates
distances between word pairs that may not be as many “steps”
apart, at least based on step distance associative networks. Of
course, this is not to say that these distant relationships are unim-
portant. Having said this, we did find that path lengths in the
Undirected and Directed SDNs predicted zRTs, suggesting thatFigure 4. Standardized RTs for relatedness judgments in Experiment 1 as

a function of network path lengths. Error bars represent standard errors of
the mean. SDN � step distance network; ACN � association-correlation
network. See the online article for the color version of this figure.

Figure 5. Standardized RTs for relatedness judgments in Experiment 1 as
a function of network path lengths and type of relatedness decision. Error
bars represent standard errors of the mean. See the online article for the
color version of this figure.
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step distance networks are also able to effectively account for the
distant priming effects in the memory network.

It is important to reiterate that the relatedness decisions may be
driving some of the observed priming effects in this task. First, the
quadratic trends are likely due to the influence of the strength of
relatedness on related and unrelated decisions; that is, the reason one
finds the slowest RTs at path length 2 is because these items are most
ambiguous regarding their status as related word pairs. Importantly,
due to the arbitrary nature of the relatedness decision and the differ-
ences in proportion of related and unrelated items at different path
lengths within the three networks, it is difficult to directly compare the
relative performance of the three networks in this task. Second, the
SDNs used in the current study were explicitly created from free
association norms, and thus their explanatory power may just reflect
the high degree of overlap between the base task (free association) and
the relatedness judgment task used in Experiment 1. Thus, in Exper-
iment 2, we explored whether network path length can indeed account
for semantic priming in a priming task that does not explicitly demand
direct access to the association to make the response (i.e., target
demasking) and also compared the relative performance of each of the
three network models.

Experiment 2

Method

Participants. Forty young adults (Mage � 20.9 years, SD �
2.8) were recruited from undergraduate courses at Washington

University in St Louis, and from Volunteers for Health (VFH), a
recruitment program sponsored by the Washington University
School of Medicine. We decreased the total number of participants
here because all trials involved the same response within a partic-
ipant and contribute to the analyses. All participants were Native
English speakers and were compensated through course credit or
$10 for their participation. One participant misunderstood the
experiment instructions and typed primes instead of targets for all
trials, and hence their data was excluded from the final sample.

Materials. Given that the specific list did not influence any of
the results in Experiment 1, one list of 240 items was randomly
chosen from one of the five lists used in Experiment 1, with 40
word-pairs from path lengths 1, 2, 3, 4, 6, and 15 randomly
sampled from the ACN. The list was then counterbalanced for
directionality between primes and targets across participants. Each
word pair also had a corresponding path length in the Undirected
and Directed SDN.

Procedure. The primed progressive demasking task was de-
veloped using E-Prime 2.2. Participants saw a black fixation cross
on the screen for 500 ms. Next, a blank screen was displayed for
200 ms, followed by the prime word (e.g., RELEASE), which was
displayed for 120 ms. Immediately after, the target word was
progressively demasked on the screen at the same location (see
Figure 7). During progressive demasking, the display alternated
between the target (e.g., ANCHOR) and a mask (a row of pound
signs matching the length of the word, e.g., ######). The total
duration of target-mask pair was held constant at 500 ms, but the

Figure 6. Proportion of items in the different path lengths in the step distance networks (SDNs), as a function
of ACN path lengths in Experiment 1. Error bars represent standard errors of the mean. ACN � association-
correlation network. See the online article for the color version of this figure.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

8 KUMAR, BALOTA, AND STEYVERS



ratio of target display time to mask display time progressively
increased. In the first cycle, the mask was presented for 500 ms. In
the second cycle, the target was displayed for 16 ms followed by
the mask for 484 ms. The duration of the target increased at each
cycle (0, 16, 32, . . . , 500 ms), and the duration of the mask
decreased (500, 484, 468, . . . 0 ms). The demasking procedure
continued until the target was fully revealed for 500 ms or until the
target was identified by the participants by pressing the spacebar.
Participants then typed in the correct target word on the next
screen. The next trial began immediately after typing in the correct
target and pressing the spacebar. Participants were given 3 practice
trials followed by 240 experimental trials. After every 18 trials,
participants could take a short break and continue with the exper-
iment when they were ready.

Results

Effect of ACN path length on zRTs. Before analyzing the
response latencies to identify the target words, we first removed all
trials in which the participant did not identify the correct target,
which excluded 2.7% of the total trials. Next, we excluded outliers
and standardized the RTs using the same procedures as in Exper-
iment 1. This process excluded 1.9% of the remaining trials. A
repeated measures ANOVA on zRTs revealed a significant effect
of ACN path length, F(5, 190) � 53.85, p � .001, �p

2 � .586. As
shown in Figure 8, this effect indicated a significant increase in
zRTs from path lengths 1 to 2 (p � .001), and 2 to 3 (p � .001).
Differences between zRTs to identify the target at path length 3,
and higher path lengths were not statistically significant. Impor-
tantly, these effects persisted after controlling for lexical variables
such as word frequency, length, concreteness, and standardized
lexical decision times in LME analyses, as in Experiment 1.

Effect of SDN path lengths on zRTs. We next examined the
effect of path lengths derived from the Undirected and Directed
SDNs on zRTs in the primed progressive demasking task. Due to
extremely few data points in the higher path lengths in the directed
network, we again collapsed all path lengths greater than 5 into one
path length, as in Experiment 1. As shown in Figure 8, path lengths
from the Undirected SDN significantly predicted zRTs to identify
the target. Specific comparisons indicated that zRTs increased
from path length 1 to 2 (p � .001), from path lengths 2 to 3 (p �
.001), and then marginally from path lengths 3 to 4 (p � .058) in
the Undirected SDN. Path lengths from the Directed SDN also
significantly predicted zRTs to identify the target. Specific com-
parisons indicated that zRTs significantly increased from path
lengths 2 to 3 (p � .015), from 4 to 5 (p � .038), and then from
path length 5 to higher path lengths (p � .001) in the Directed
SDN.

Model comparisons. Given that the results from this task
were not complicated by the relatedness decision (i.e., response
latencies should be linearly related to demasking performance), we
were able to directly compare the model estimates. To estimate the
unique variance contributed by the distance estimates derived from
each type of network configuration at the item level, we calculated
the individual R2 for each model, as well as estimates of AIC
(Akaike, 1987) and BIC (Schwarz, 1978), after controlling for
covariates (smaller AIC and BIC estimates indicate a better fit to
the data). Importantly, we used continuous distance estimates for
these comparisons to retain the numerical distance-based differ-
ences among the different network models and examine how the
specific “steps” in the networks explain demasking latencies at the
item level. Following Wagenmakers and Farrell (2004), we also
calculated Akaike and Schwarz weights for each network to assess
the relative strength of evidence for each model based on their AIC
and BIC model estimates (higher Akaike and Schwarz weights
indicate greater evidence for the model). As shown in Table 3, the
Directed SDN was the most likely model, followed by the Undi-
rected SDN, which in turn was better than the ACN, based on

Figure 8. Standardized RTs to identify target word in demasking in Experiment
2 as a function of network path lengths. Error bars represent standard errors of the
mean. SDN � step distance network; ACN � association-correlation network.
See the online article for the color version of this figure.

Figure 7. Paradigm for the progressive demasking procedure used in
Experiment 2. See the online article for the color version of this figure.
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Akaike and Schwarz weights. Further, all three network models
explained a significant amount of variance over and above the
item-level covariates, i.e., word length, concreteness, word fre-
quency, and lexical decision times.

Discussion

Results from Experiment 2 indicate that network path lengths
can indeed account for distant semantic priming in a primed
progressive demasking task. We found a linear relationship be-
tween network path length and standardized response latencies to
identify the target via demasking in the ACN, the Undirected and
Directed SDNs. This is especially interesting as the progressive
demasking task did not require any direct retrieval of the semantic
association to make the response, and yet, we observed that path
lengths derived from word associations directly predicted demask-
ing response latencies. Interestingly, path lengths from the ACN
increased linearly only up to 3 steps, after which the network
seemed to no longer be sensitive to priming effects in this task,
further suggesting some differences in the sensitivity across the
tasks. As expected, the rise in zRTs in this task mirrored the rise
in zRTs for the “related” item decisions in Experiment 1 (see
Figure 6), indicating that priming extends to distant concepts but
also dissipates as the distance between the concepts increases.

General Discussion

The current set of experiments investigated the influence of
large-scale word association networks on priming effects in two
behavioral tasks. We provide strong evidence for multiple-step
priming using network path length from association networks as an
indicator of distance between concepts within the network. We
now discuss specific findings from the experiments and important
differences between the different network representations.

Network Structure and Distant Priming

A primary goal of the present study was to empirically examine
priming effects for distant connections, as defined by distinct
network representations. This work was motivated by a recent
paper by Kenett et al. (2017), who used network path length
derived from an 800-word Hebrew network to show that path
length predicted performance in a relatedness judgment and free-
recall task. Specifically, Kenett et al. found a quadratic relationship
between network path length and response latencies in a related-
ness judgment task, such that response latencies overall increased
until a categorical boundary (i.e., 3 steps) in the network and then
decreased at longer path lengths. We successfully replicated and

extended their work to a larger 5,018-word association network in
English and also compared their graph-theoretical approach of
mapping the lexicon to undirected and directed step distance
networks (Steyvers & Tenenbaum, 2005). Further, while Kenett et
al. did not observe any differences for response latencies at distant
path lengths (i.e., beyond 6 steps), we found significant decreases
in response latencies at path lengths 6 and 15 in the ACN and at
path lengths 3, 4, and 5 in the SDNs, after controlling for lexical
variables such as word frequency, concreteness, word length, and
lexical decision times. Our results thus provide clear evidence for
distant semantic priming and add to previous work on multiple-
step spreading activation (Balota & Lorch, 1986; Kenett et al.,
2017; McNamara & Altarriba, 1988). To our knowledge, this is the
first study to empirically demonstrate that semantic priming can
indeed extend to relatively distant concepts in the network, that is,
6 or 15 steps, within the ACN configuration. The results from the
second experiment further indicated that network path length also
successfully accounts for semantic priming in a task that does not
demand direct retrieval of the association (via the relatedness
judgment task used in Kenett et al. and in our first experiment). We
again found significant differences in response latencies to identify
the target word at relatively distant path lengths, that is, 4 and 5
steps. Further, response latencies did not differ after 3 steps in the
ACN but continued to increase linearly in the Undirected and
Directed SDNs. Based on overall model fits, the Directed SDN
was the most likely model, followed by the Undirected SDN and
the ACN. Importantly, all models significantly explained more
variance than item-level covariates.

Comparing Word Association Network Configurations

An important contribution of the current set of experiments is
the comparisons across three different network configurations.
However, one potential concern regarding these comparisons may
be that the ACN and SDNs may not be truly comparable due to the
differences in their network construction methodologies. Specifi-
cally, the ACN starts from a correlation matrix for all words and
applies the PMFG algorithm to construct the final network. On the
other hand, the SDNs only connect edges between the nodes if at
least two participants produced one word in response to another,
and this criterion is directional for the Directed SDN. To evaluate
whether these differences in methodologies influenced our find-
ings, we constructed three new networks—an Undirected PMFG
network, an Unfiltered ACN, and a Filtered ACN.1—and exam-
ined their predictive power in our experiments.

To construct the Undirected PMFG, we first calculated correla-
tions between all nodes in the Undirected SDN using the undi-

Table 3
Model Comparison Metrics for the Three Networks in Experiment 2

Model R2 (%) AIC Akaike weights BIC Schwarz weights

Covariates � Directed SDN 25.69 501.06 0.99 529.29 0.99
Covariates � Undirected SDN 21.80 522.32 2.41 � 10�5 550.55 2.4 � 10�5

Covariates � ACN 17.95 542.41 1.05 � 10�9 570.64 1.05 � 10�9

Covariates 13.06 564.55 1.64 � 10�14 588.74 1.23 � 10�13

Note. SDN � step distance network; ACN � association-correlation network. Higher Akaike and Schwarz weights indicate greater evidence for the
likelihood of a model.
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rected path length distance matrix. Next, the PMFG algorithm was
applied to this correlation matrix to construct a planar graph
consisting of the same number of nodes and retaining only the
most relevant edges. As shown in Figure 9 (Top Panel), the
Undirected PMFG had a very similar configuration to the ACN,
with path lengths ranging from 1 to 25. To ensure an equal number
of items in each “path length” for our experiments, we partitioned
these original Undirected PMFG path lengths into quintiles and
used them in our subsequent analyses. To construct the Unfiltered
ACN, we simply retained the matrix of symmetric correlations that
was later passed to the PMFG algorithm to create the original
ACN. Thus, the Unfiltered ACN is a complete network with edges
weighted by the correlations (see middle panel of Figure 9). Given
that the Unfiltered ACN contains correlations between words and
not “path lengths”, we partitioned these correlations into quintiles
(arbitrary steps in this case) for the items used in our experiments.
Finally, to construct the Filtered ACN.1 network, we dropped all
edges with correlations below 0.1 in the Unfiltered ACN and then
constructed an undirected, unweighted network (see bottom panel
of Figure 9). Path lengths in the Filtered ACN.1 ranged from 1
to 3 and were directly used as independent variables in our
analyses. Network parameters for these new networks are also
presented in Table 2, in addition to the parameters for the ACN,
Undirected and Directed SDN.

To evaluate the extent to which these new networks compare to
our original networks, we repeated our analyses for Experiments 1
and 2. In Experiment 1, we found that the Undirected PMFG,
Unfiltered ACN, and Filtered ACN.1 all accounted for the qua-
dratic pattern in relatedness judgment response latencies. More
importantly, we also specifically estimated the relative variance
accounted for by each network in response latencies to identify
the target through demasking in Experiment 2. We first compared
the nonplanar networks, that is, the Directed and Undirected
SDNs, the Unfiltered ACN, and the Filtered ACN.1. To make
comparisons across all networks easier, we report fit indices for all
networks in Table 4. As shown, we again found that the Directed
SDN was the most likely model compared to the Filtered ACN.1
network, which was in turn more likely than the Undirected SDN,
followed by the Unfiltered ACN, based on Akaike and Schwarz
weights. Interestingly, the Unfiltered ACN and Undirected SDN
explained relatively equivalent amounts of variance, suggesting
that the inclusion of directional information in the Directed SDN
contributes significantly to its predictive power in this task. On the
other hand, when comparing the two planar networks (ACN and
Undirected PMFG), the ACN was a more likely model compared
to the Undirected PMFG. Collectively, these findings suggest that
alternate ways of constructing the ACN from similarity correla-
tions (e.g., using an unfiltered network or setting an arbitrary

Figure 9. Large-scale visualizations and paths from RELEASE to ANCHOR in the Undirected PMFG (top),
Unfiltered ACN (middle) and Filtered ACN.1 (bottom) networks. ACN � association-correlation network;
PMFG � Planar Maximally Filtered Graph. See the online article for the color version of this figure.
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cutoff) lead to a slight increase in explanatory power compared to
the original ACN, possibly due to the retention of a greater number
of edges compared to the original ACN. However, the Directed
SDN still explains the maximum variance in this task, likely due to
the directed associations it captures. Further, applying the PMFG
algorithm to an already restricted network such as the Undirected
SDN actually leads to a loss in explanatory power compared to the
ACN.

As described earlier, the ACN uses co-occurrence information
and an information filtering algorithm to construct the network.
This type of network construction method leads to several direct
associations (e.g., TIGER-STRIPES is 37 steps away in the ACN
and directly connected, i.e., 1 step away in the SDNs) being
dropped, giving rise to more indirect, high-level associations (e.g.,
TRAGEDY-REMORSE is 1 step away in the ACN and farthest,
i.e., 4 steps away in the Directed SDN). While this topological
constraint of graph planarity represents an unbiased method for
eliminating spurious correlations from the complete network, it is
possible that imposing this criterion results in a loss of direct links
in the network, thus losing the shortest paths between words and
potentially exaggerating distances between some items. Indeed,
this is exemplified in the branching network structure shown in the
top panel of Figure 1 and Figure 9. Previous work has shown how
metric axioms that must be respected by spatial representations
(Tversky, 1977) are routinely violated by word association norms
(Griffiths, Steyvers, & Tenenbaum, 2007). Thus, it is possible that
the planarity criterion used by the ACN is a similar geometric
constraint that in some instances does not necessarily capture
direct word associations. Furthermore, our additional analyses of
the Unfiltered ACN, Filtered ACN.1, and Undirected PMFG pro-
vide evidence that when a different geometric criterion is used for
network construction, the ACNs and SDNs may be differentially
sensitive to explaining behavioral performance in priming tasks.

Finally, it is worth noting that the ACNs and SDNs may perform
differently in a conceptually driven task where different types of
semantic relationships are accessed, which would suggest that
different types of stimuli/tasks emphasize different properties of
the semantic network space. Indeed, Gruenenfelder, Recchia, Ru-
bin, and Jones (2016) recently argued for a hybrid representation
of lexical/semantic memory and suggested that individuals switch
between a contextual representation and associative networks
when generating free associations. Our results suggest that there
may also be differences in how individuals use these different
types of semantic representations in tasks that do not explicitly
involve word association but do place constraints on the type of

semantic relationships being accessed. Our future work aims to
address the extent to which these models predict performance in
conceptual semantic tasks.

Distributional Models of Word Representation

While the current set of experiments focused on different types
of network representations, another important class of models of
semantic memory represents words through vectors in a multidi-
mensional space. In distributional representations of semantic knowl-
edge, such as the LSA (Landauer & Dumais, 1997), BEAGLE (Jones
& Mewhort, 2007), and word2vec (Mikolov, Chen, Corrado, & Dean,
2013), words are an aggregate of distributed dimensions that are
typically derived from statistical co-occurrences in natural language.
This type of representation of semantic memory is clearly different
from a network-based perspective, which is typically based on
word association norms. Consequently, there has been consider-
able interest in comparing different types of semantic word repre-
sentations and the extent to which they explain complex behavior.
For example, LSA has been shown to successfully simulate com-
plex human behavior in tasks such as word categorization (Laham,
2000), semantic similarity (Landauer & Dumais, 1997) and dis-
course comprehension (Kintsch, 1988). However, LSA has also had
some difficulty accounting for semantic priming effects (Hutchison et
al., 2008; Kenett et al., 2017), ignoring word transitions in language
(Perfetti, 1998), and violating power laws of semantic connectivity
observed in step networks (Steyvers & Tenenbaum, 2005). To our
knowledge, there is relatively little work examining the extent to
which network and distributional representations in the English lan-
guage account for semantic priming performance, especially for more
distant concepts, although, as discussed before, Kenett et al. showed
that the ACN path lengths in the Hebrew network outperformed LSA
in the relatedness judgment task.

Therefore, we conducted additional analyses to examine the
extent to which corpora-based distributional semantic models
compare to association network-based semantic models described
above in explaining priming effects. As discussed before, Hutchi-
son et al. (2008) previously showed that LSA does not account for
semantic priming effects to the same extent as simple associative
strength estimates. However, the Hutchison et al. study was con-
ducted on direct associates and not distant model-based associates,
and hence it is unclear if the LSA representation may do better in
accounting for the present distant priming effects.

In addition to comparing network-based models to LSA repre-
sentations, we were also interested in testing an alternative distri-

Table 4
Model Comparison Metrics for Planar and Non-Planar ACNs and SDNs

Model type Model R2(%) AIC Akaike weights BIC Schwarz weights

Non-planar networks Directed SDN 25.69 501.06 0.99 529.29 0.99
Filtered ACN.1 22.84 516.74 0.0004 544.97 0.0004
Undirected SDN 21.80 522.32 2.41 � 10�5 550.55 2.41 � 10�5

Unfiltered ACN 21.77 522.49 2.21 � 10�5 550.72 2.21 � 10�5

Planar networks ACN 17.95 542.41 1.05 � 10�9 570.64 1.05 � 10�9

Undirected PMFG 14.36 560.22 1.42 � 10�13 588.45 1.42 � 10�13

Covariate model Covariates 13.06 564.55 1.64 � 10�14 588.74 1.22 � 10�13

Note. SDN � step distance network; ACN � association-correlation network; PMFG � Planar Maximally Filtered Graph. All models include item-level
covariates. Higher Akaike and Schwarz weights indicate greater evidence for the likelihood of a model.
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butional model. A more recent predictive distributional model,
word2vec (Mikolov et al., 2013) has received considerable atten-
tion in fields of computer science and natural language processing
for explaining performance in a variety of behavioral tasks. The
word2vec model uses neural networks and a large training corpus
(e.g., from a Google News dataset) to compute continuous vector
representations of words which encode semantic information.
These vector representations can then be used to compute an index
of semantic similarity between words via vector cosines and are
also useful inputs for other natural language processing tasks such
as sentiment analysis (dos Santos & Gatti, 2014), document clas-
sification (Lilleberg, Zhu, & Zhang, 2015), and named entity
recognition (Severyn & Moschitti, 2015). Interestingly, word2vec
has been shown to successfully solve verbal analogy problems
(e.g., king: queen:: man:?) using simple vector arithmetic, al-
though other research suggests that word2vec successfully cap-
tures only certain types of semantic relationships and not others
(Chen, Peterson, & Griffiths, 2017). More recently, Mandera,
Keuleers, and Brysbaert (2017) compared the relative performance
of distributional semantic models (e.g., LSA-type and word2vec)
on a battery of semantic priming tasks (Hutchison et al., 2013) and
concluded that predictive distributional models like word2vec pro-
vided a better fit to the data. They also argued that predictive
models are psychologically more plausible and computationally
more compact than typical count-based distributional models like
LSA (but see Levy, Goldberg, & Dagan, 2015 for an alternate
perspective). However, when comparing word2vec to association-
based network models, De Deyne, Perfors, et al. (2016) found
word association networks consistently outperformed word2vec
and count-based distributional models, even though the network
models were trained on relatively smaller corpora. Of course, these
studies do not shed light on the extent to which distributional
models like word2vec and LSA explain priming performance for
distant concepts, compared to different types of association-based
semantic networks, which was the goal of the present set of
analyses.

In order to directly compare the different models for all word
pairs used in the current experiments, we obtained LSA cosines
from the LSA website (http://lsa.colorado.edu/) using the recom-
mended topic space of 300 factors, which corresponds to a general
reading level (up to 1st year of college). We also obtained
word2vec cosines from a pretrained model trained on 100 billion
words from a Google News dataset (Mikolov et al., 2013). Table
2 reports correlations between the vector cosines derived from
LSA and word2vec models and the different networks for the stimuli
used in Experiments 1 and 2. It is important to note here that there
were considerable differences across the models in the extent to which
they captured “semantic similarity”, given that the average correlation
among all the different word representations across both experiments
was only 0.46.

To estimate the variance contributed by each type of distance
estimate, we computed separate estimates for R2, AIC and BIC for
each network and distributional model in Experiment 2. Our re-
sults indicated that cosines derived from LSA (R2 � 24.97%,
AIC � 505.11, BIC � 533.34) and word2vec (R2 � 27.72%,
AIC � 489.52, BIC � 517.75) also successfully explained per-
formance in the priming task. While the Directed SDN outper-
formed LSA, word2vec was the most likely model in this task
overall. Our results are thus consistent with Mandera et al. (2017)

in that the word2vec model does indeed explain distant priming
effects in our task and has lower AIC/BIC values compared to all
network-based models. Of course, continuous cosines from LSA
and word2vec have more variability compared to the “steps” in the
network models, so these comparisons are limited in scope, and
how step-based representations derived from word2vec and LSA
would compare to association networks is an avenue for future
research.

Another important aspect of these results is the overall low
correlations observed between the different distance estimates
across distributional and network models. These correlations sug-
gest that there are structural differences between network-based
and distributional representations. For example, the word RE-
LEASE is only 2 steps away from the word ANCHOR in the
Undirected SDN but is very weakly associated in the word2vec
(cosine �0.004) and LSA (cosine .08) multidimensional spaces.
The path from RELEASE to ANCHOR is mediated by the word
HOLD in the undirected network, but it is possible that this
particular usage of ANCHOR does not co-occur in the same
contexts as RELEASE in natural language, which is the mecha-
nism underlying cosines obtained from the distributional models.
Importantly, the tasks in the current study focused on semantic
priming effects measured via progressive demasking, and it is
possible that distributional representations may be more predictive
of performance in more conceptual tasks.

The current results also inform an ongoing debate in semantic
memory representation between association-based network models
and distributional models. There is now accumulating evidence
that distributional models that derive their semantic representa-
tions from solely linguistic sources are less likely to capture
surface-level, attributive, and perceptual features (Baroni & Lenci,
2008; Lucy & Gauthier, 2017) and also encounter difficulties in
explaining word association data (Griffiths et al., 2007). Further,
the amount of data required (e.g., a billion words) to adequately
train distributional models to perform at the level of association-
based models calls into question their psychological plausibility
(Asr, Willits, & Jones, 2016; De Deyne, Perfors, et al., 2016). On
the other hand, while association-based networks appear to per-
form at similar levels, and often outperform text-based distribu-
tional models in a variety of semantic tasks, the validity of such
representations as complete accounts of semantic memory has
been questioned on grounds of being constructed from retrieval-
based processes involved in word association tasks (for a detailed
discussion, see Jones, Hills, & Todd, 2015; Siew, Wulff, Beckage,
& Kenett, 2019). However, there is evidence to suggest that
association-based network models do indeed capture complemen-
tary semantic information compared to text-based distributional
models (Gruenenfelder et al., 2016). Therefore, a complete ac-
count of semantic memory should be able to account for how such
associations are formed and acquire the complex network structure
that successfully explains behavioral performance in semantic
tasks. Ultimately, recent approaches that attempt to integrate non-
linguistic information sources with traditional distributional mod-
els to construct multimodal semantic representations (Bruni, Tran,
& Baroni, 2014; Kiela & Bottou, 2014; Lazaridou, Pham, &
Baroni, 2015) appear to represent a promising step toward recon-
ciling these two families of semantic models.
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Limitations

There are a few important limitations to this work. First, even
though the current results closely replicate the results reported by
Kenett et al. (2017) in a Hebrew network, there is an important
difference between the Hebrew ACN used by Kenett et al., and the
English ACN in the current study. The Hebrew network was based
on responses from a continuous free association task (where par-
ticipants produced as many responses as they could to the target
word), whereas the Nelson et al. norms are based on a discrete free
association task (where participants produced the first word that
came to mind for a particular target word). There is some debate
regarding the validity of both continuous responses (see Nelson,
McEvoy, & Dennis, 2000) and discrete responses (Hahn, 2008).
However, given that the English ACN and SDN networks used in
the current set of experiments were created from the same Nelson et
al. norms from a discrete association task, we believe that the differ-
ences observed in predictive power of the ACN and the SDNs in the
current study were not critically influenced by the nature of associa-
tive responses per se, although it is important to acknowledge that this
issue is deserving of further exploration.

Further, there were also important differences between the
distributional (i.e., LSA and word2vec) and network-based
models (i.e., ACN, Directed and Undirected SDN) of word
representation. For example, the word2vec model used in the
current set of experiments was trained on a Google News
corpus, whereas the LSA model was derived from a preexisting
topic space intended to simulate general college-level reading
levels. These corpuses are clearly very different from each other
and also from the Nelson et al. database of free association
norms, and previous research suggests that the type of corpus
used can significantly impact how well semantic models ac-
count for human performance (Recchia & Jones, 2009). Thus, it
is important to acknowledge that the nature of the task, the
stimuli and the training corpora are all likely to influence the
extent to which different types of semantic models explain
behavioral performance.

Conclusion

The current set of experiments investigated the predictive power
of path lengths derived from three large-scale semantic networks
in accounting for lexical priming effects in two behavioral tasks
and provided strong evidence for distant priming effects. We also
demonstrated important structural differences between correlation-
based networks and association networks and showed that associ-
ation networks proposed by Steyvers and Tenenbaum (2005) are
also able to capture relatively distant semantic relationships. Fi-
nally, we showed that distributional models like the LSA and
word2vec also successfully captured similar behavioral patterns
across the two tasks, although there were again important struc-
tural differences in the semantic information captured across the
different models.
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