CHAPTER

Visual Word Recognition

Melvin J. Yap and David A. Balota

Abstract

Visual word recognition is an integral aspect of reading. Although readers are able to recognize visually
presented words with apparent ease, the processes that map orthography onto phonology and semantics
are far from straightforward. The present chapter discusses the cognitive processes that skilled readers
use in order to recognize and pronounce individual words. After a historical overview of the broad
theoretical developments in this rich field, the chapter provides a description of methods and a selective
review of the empirical literature, with an emphasis on how the recognition of an isciated word is
modulated by its lexical- and semantic-level properties and by its context. The final section of the chapter
briefly considers some recent approaches and analytic tools in visual word recognition research, including
megastudy, analysis of response time distributions, and the important role of individual differences.

Key Words: visual word recognition, lexical decision, speeded pronunciation, masked priming, semantic
priming, orthographic priming, phonological priming, megastudies, individual differences, response time

distributional analysis

Skilled rcading is a remaikably complex and
multifaceted behavior, which relies on the recog-
nition of individual words. The squiggly marks on
the page need to somehow map onto a word repre-
sentation so that the meaning of the word can be
accessed. At first blush, this appears to be a rela-
rively straightforward process of pattern recogni-
tion. However, words code and convey multiple
domains of information; including orthography,
phonology, morphology, and ultimately meaning.

Indeed, because of the multidimensional nature of

word recognition, this literature has made seminal
contributions to (1) the distinctions between auto-
matic and attentional mechanisms (e.g., Neely,
1977), (2) the development of computational mod-
els (e.g., McClelland & Rumelhart, 1981), and (3)
cognitive neuroscience (e.g., Petersen, Fox, Posner,
Mintun, & Raichle, 1989). Given the extensive
influence of word recognition research on cognitive
science, attempting to provide a concise overview
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of this area is a daunting task. We have chosen to
first provide a brief historical overview of the area,
with an emphasis on the wide-ranging theoretical
contributions. We then turn to some basic findings
in the literature and conclude with more recent
developments in studying word recognition. Our
goal is to expose the reader to the major issues, as
opposed to providing detailed expositions of each
of the research topics.

Historical and Theoretical Overview
Although a number of writing systems exist,
reading research has been dominated by the study
of alphabetic writing systems, where the unit of
language symbolized by writing is the phoneme
(Treiman & Kessler, 2007). In alphabetic writing
systems, the building blocks of words are letters,
and so the recognition of letters was central to early
models of visual word processing. If printed words
are recognized via their constituent letters, then it



is natural to wonder whether letters are also recog-
nized via their constituent features (see Grainger,
Rey, & Dufau, 2008, for a review). An impor-
tant approach in this area is the feature analytic
approach. According to this view, there is a set of
visual features (e.g., vertical lines, horizontal lines,
diagonal lines, curved closed forms, closed open
forms, intersections) that are critical for discrimi-
nating among the letters. So, the letter <H» would be
defined by the convergence of two vertical lines and
one horizontal line. Indeed, component features
such as these laid the foundation for the first com-
putational model of letter perception (pandemo-
nium model; Selfridge & Neisser, 1960). About the
same time, Hubel and Wiesel (1962) were able to
identify receptive fields of cortical neurons in alert
cats; these receptive fields appeared to be sensitive
to vertical lines, horizontal lines, oblique lines, and
intersections. Although it is likely that such fearures
play an important inidal role in letter perception,
many questions remain. These include (1) how the
features are bound together to form a letter (see
Treisman, 1999, for a review of the binding prob-
lem); (2) how the system flexibly codes different sets
of features that are necessary for recognizing letters
across fonts, visual angles, and levels of degrada-
tion; and (3) how the system adjusts to handwritten
text wherein the features appear to be very differ-
ent from standard text (see Plamondon & Srihari,
2000, for a detailed review).

Moving on to the letter level, letters vary in
the extent of feature overlap, and, as expected,
this influences the ease of searching for a letter in
a background of letters (e.g., it is more difficult to
locate <Z» when it is embedded within the letters B,
N>, K, and X, than when it is embedded within
O, J», Uy, D»; see Neisser, 1967). Appelman and
Mayzner (1981), in a comprehensive review of
isolated letter recognition, considered studies that
measured (1) participants’ accuracy for identify-
ing single letters under varying levels of degrada-
tion or (2) their response times for letter naming,
letter matching, and letter classification (i.e., let-
ter vs. nonletter forms). The results, based on over
800,000 observations from 58 studies, revealed that
the frequency of a letter in the language (e.g., T is
approximately three times more frequent than «G)
had no effect on accuracy-based studies where par-
ticipants simply report letters. Interestingly, how-
ever, there was a clear effect of frequency on response
latencies. Appelman and Mayzner (1981) suggested
that the consistent absence of letter frequency
effects in accuracy was incompatible with the idea

that early letter encoding is modulated by letter fre-
quency. We primarily note this pattern because it
is surprising that the simple effect of frequency of
exposure would produce varying influences across
tasks, and hence it is important to remind the reader
that there are always important berween-task differ-
ences when considering the influence of a variable
on performance.

Recognizing Letters Within Words

Letters are rarely presented in isolation, but are
typically embedded in words. Interestingly, Catrell
(1886) argued that letters (e.g., «v) were more eas-
ily reported when presented in the context of letters
that form words (born) than in the contexr of lerters
that form nonwords (gorn). There are many inter-
pretations of this simple effect. For example, par-
tial information from words (bor_) might be more
useful for helping participants guess the identity of
the critical letter «av. This led to the development of
an experimental paradigm that involved a forced-
choice test for letters embedded in words, non-
words, and in isolation (Reicher, 1969; Wheeler,
1970). By providing the participant with wwo
plausible response alternatives (e.g., bore vs. born),
guessing is ruled out as an explanation, along with
other interpretations of Cattell’s original observa-
tion. Remarkably, the superior reporting of letters
embedded in words, compared with when they were
embedded in nonwords or presented in isolation,
was upheld. This became known as the word superi-
orizy effect ot the Reicher-Wheeler effect.

The theoretical significance of the word superior-
ity effect is profound because one is confronted with
the following conundrum: If letters are a necessary
first step for recognizing a word, how can word-
level information influence the perception of the
letters making up the word? This effect stimulated
the highly influental interactive activation model
of letter perception developed by McClelland and
Rumelhart (1981) and Rumelhart and McClelland
(1982) (see Figure 3.1). This powerful computa-
tional model involves three levels (features, let-
ters, and words) and two types of connections
across representations—ifacilitatory (represented by
arrows) and inhibitory (represented by filled circles).
Presenting a word activates the feature-, letter-, and
word-level representations consistent with that word.
Importantly, as word-level nodes receive activation,
they begin to provide feedback to position-specific
letrers. This additional top-down influence of word-
level on letter-level representations drives the word
superiority effect.
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Fig. 3.1 McClelland and Rumelhart’s (198 1) interactive activation model of letter recognition.

The

cally important for many reasons. First, the model

interactive activation model is histori-
emphasized cascaded, rather than staged, process-
ing (see McClelland, 1979), wherein all nodes
accumulate activation across time via the spread
of activation and inhibition across the connection
paths. Second, the activation dynamics of all units
are constrained by the activation and inhibition of
other similarly spelled words (i.c., neighbors). This

is an important
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r the classic Logogen
model developed by Morton (1970), wherein lexi-
cal representations (logogens) accumulate activation
across time independently of each other. Third, the
interactive activation framework is a critical compo-
nent of a number of computational models of visual
word recognition, and predates the principles of the
parallel distributed processing (PDP) approaches
described in the next section.

Models and Tasks of Lexical Processing

Although the interactive activation model
(McClelland & Rumelhart, 1981) conrains word-
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level representations, it was primarily developed to
explain letter-rather than word-recognition perfor-
masice. However, forced-choice lerrer recognition
is rather removed from word-level processing, and
one should consider tasks that reflect processes at
the word level. Many tasks have been developed to
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investigate lexical-level processing, including caz-
egory verification and semantic classification (e.g.,
classifying a word as living or nonliving), perceptual
identification (identifving a perceptually degraded
stimulus), and reading (with eye-fixation durations
on a target word measured). Alchough all of thes

tasks have important advantages and some disad-
vantages, here we focus on two tasks that have been
dominant in work on isolated word recognition,
speeded pronunciation (reading a word or nonword,
e.g., flirp, aloud) and lexical decision (classifying
letter strings as words and nonwords via a button
press). In these two tasks, rescarchers respectively
measure the amount of time needed by partici-
pants to initiate the pronunciation of a word or to
press a butron. Both tasks a priori appear to map
onto processes involved in a word-level representa-
tion, reaching threshold to produce the appropriate
response, either the correct pronunciation or the
correct word/nonword response.

MODELS OF SPEEDED PRONUNCIATION

We will first consider computational models

£
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word-pronunciation performance, since this
task has been particularly influential in model
development. Our focus is on models of English
pronunciation, although it should be noted that

models have been implemented in other languages



(e.g., French; Ans, Carbonnel, & Valdois, 1998).
Historically, there have been two major classes
of models of speeded pronunciation: dual-route
models and single-route models. The dual-route
cascaded (DRC) model (Coltheart, Rastle, Perry,
Langdon, & Ziegler, 2001) has two distinct path-
ways for pronouncing a word aloud: a direct lexical
route that maps the full visual letter string onto
a lexical representation and an assembled sublexi-
cal route that maps the letter string onto its pro-
nunciation based on abstract grapheme-phoneme
correspondence rules (see Figure 3.2). These rules
(e.g., & — /[k/) were selected on purely statistical
grounds; that is, /k/ is the phoneme most com-
monly associated with < in English monosyllables.
The DRC model accounts for many findings in the
visual word recognition literature. One particu-
larly important finding is the frequency by regular-
ity interaction. That is, regular words that adhere
to abstract grapheme-phoneme correspondence

rules (c.g., & — /k/) are pronounced faster than
irregular words (those that violate the rules, e.g.,
pint), and this effect is exaggerated for words that
are rarely encountered in printed language. This
result follows the assumption thar the lexical route
(based on whole-word representations) is fre-
quency modulated, but the assembled route (based
on smaller sublexical units) is insensitive to whole-
word frequency. Hence, irregular low-frequency
words (e.g., pint) are recognized more slowly than
regular low-frequency words (e.g., hint), because
the two routes produce conflicting pronuncia-
tions for pint, and extra time is needed to resolve
the competition before the correct pronunciation
can be produced. In contrast, for high-frequency
words, the difference in recognition times for regu-
lar (e.g., save) and irregular (e.g., have) words is
attenuated or absent, because the lexical route pro-
duces an output before there is competition from
the slower sublexical roure.
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Fig. 3.2 Coltheart et al.’s (2001) DRC model of visual word recognition and reading aloud.
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Coltheart et al. (2001) noted that a dual-route
model also easily accommodates an important neu-
ropsychological dissociation between acquired sur-
face and phonological dyslexia. Individuals with
surface dyslexia appear to have a breakdown in the
lexical route, since they are relatively good at pro-
nouncing nonwords and regularize words thar do
not conform to English spelling-to-sound rules (i.e.,
they pronounce pint such that it thymes with /inz).
In contrast, individuals with phonological dyslexia
appear to have a breakdown in the sublexical route
such that they have particular difficulty with non-
words but are relatively good at pronouncing both
regular and irregular words, which have lexical
representations.

The second major class of models of speeded pro-
nunciation is nicely reflected in the parallel discrib-
uted connectionist model developed by Seidenberg
and McClelland (1989). The general structure
of this model is displayed in Figure 3.3, in which
a set of input units codes the orthography of the
stimulus and these units map onto a set of hidden
units, which in turn map onto a set of phonologi-
cal units that code the pronunciation of the stimu-
lus. Inirially, the pathway weights are set to random
levels. Gradually, through the learning mechanism
of backpropagation (a common method for train-
ing computational neural networks), the connec-
tions across levels are adjusted to capture the correct
pronunciation when a given orthographic string is
presented. This model was trained on over 2,400
single-syllable words; the number of times a word

Context
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Orthography/)
T T
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Fig. 3.3 Seidenberg and McClelland’s (1989) parallel distrib-

uted processing model.
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is presented to the model is related to its frequency
of occurrence in the language. Remarkably, after
training, Seidenberg and McClelland found that
the network produced many of the effects observed
in speeded pronunciation performance. A particu-
lar noteworthy finding is that this connectionist
network was able to account for the frequency by
regularity interaction noted above. Importantly,
the connectionist perspective is appealing because
(1) it includes a learning mechanism; (2) it does
not contain any formal spelling-to-sound “rules,”
but instead mimics rule-like behavior based on the
statistical properties of spelling-to-sound mappings
(see discussion of consistency effects later); and (3)
it involves one, as opposed to two, pathways for
pronunciation.

A hybrid model of speeded pronunciation called
developed by Perry, Ziegler, and Zorzi (2007) was
the CDP+ {connectionist dual process) model. The
CDP+ model is very much like Coltheart et al’s
(2001) model, except that the DRC model’s rule-
based sublexical route is replaced by a two-layer
connectionist network that learns the most reliable
spelling-sound relationships in the language. This
model is important because it not only accom-
modates the major empirical benchmarks in the
literature but also accounts for considerably more
item-level word recognition variance in large-scale
databases (see discussion of megastudies later). A
disyllabic version of this model, the CDP++ model,
is also available (Perry, Ziegler, & Zorzi, 2010). The
extension to disyllabic words is important because
most major word recognition models have focused
on single-syllable words (for an exception, see Ans
et al., 1998). However, the majority of English
words are multisyllabic, which involve additional
processing demands such as syllabification and
stress assignment. In this light, the CDP++ model is
an important advance that extrapolates dual-route
and connectionist principles to a much larger set of
words.

MODELS OF LEXICAL DECISION PERFORMANCE

The modeling of lexical decision performance has
taken a somewhat different path than the modeling
of speeded word pronunciation. This is not surpris-
ing, since the demands of producing the correct pro-
nunciation for a visual lecter string are quite different
from the demands of discriminating familiar words
from unfamiliar nonwords. For example, within the
DRC model, a deadline mechanism has been imple-
mented to simulate lexical decision (Coltheart et al.,
2001). That is, a word response is produced when




lexical activity in the orthographic lexicon exceeds
some threshold, while a nonword response is made
if lexical activity does not exceed that threshold after
some deadline has elapsed (see also Grainger & Jacobs,
1996). The connectionist network can also be embel-
lished to distinguish between words and nonwords by
monitoring a measure of familiarity based on semantic
activity (Plaut, 1997). Both approaches are useful for
making contact with the lexical processing literature.
In contrast to these models, there are more gen-
eral approaches that focus on the binary decision
processes involved in the lexical decision task. One
carly model in this area was proposed by Balota
and Chumbley (1984; also see Balota & OSpieler,
1999). According to this model, lexical decisions
can be based on two processes: a relatively fast-
acting familiarity-based process and a slower, more
attention-demanding process that checks the specific
spelling or meaning of a given stimulus. This model
was useful for emphasizing the decision-related pro-
cesses in this task, further underscoring the distinc-
tion between task-general and task-specific processes
in lexical decision. More recently, computational
models of lexical decision have been developed that
also emphasize the decision process. For example,
Rarcliff, Gomez, and McKoon's (2004) diffusion
model assumes that decisions are produced by a
process that accumulates noisy information over
time from a starting point toward a word or non-
word boundary. This model is noteworthy because it
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Fig. 3.4 The flexible lexical processor.

Reading

captures not only mean response time and accuracy
but also response time distributions for both correct
and incorrect responses. Hence, this model captures
the full range of behavior within the lexical decision
task, a problem for previous models. An alternative
approach is the Bayesian Reader model developed
by Norris (2006). This model assumes that readers
in the lexical decision task behave like optimal deci-
sion-makers who compute the probability that the
presented letter string is a word rather than a non-

word, given the input (see Kinoshita, this volume,

for further discussion).

It should be evident from the foregoing discus-
sion that models of lexical decision performance are
quite different from their speeded-pronunciation
counterparts. The latter emphasize processes medi-
ating spelling-to-sound translation, whereas the for-
mer emphasize processes mediating word/nonword
discrimination. Indeed, the effect sizes of major
variables differ remarkably across lexical decision
and speeded pronunciation (e.g., Balota, Correse,
Sergent-Marshall, Spieler, & Yap, 2004). Hence,
a flexible and adaptive lexical-processing system
is more consistent with the extant literature than
one that is relatively static and modular. One such
framework is presented in Figure 3.4, wherein one
can see how task demands may emphasize different
pathways within a more general lexical archirecture
(Balota & Yap, 2006). Of course, this is simply a
general perspective, but the potentially crucial point
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is that the lexical processing system adaptively con-
siders different sources of information to maximize
performance in response to the demands of a task.

In sum, the visual word recognition domain has
provided a powerful test bed for the development
of both metaphorical and computational models of
mapping visual patterns onto phonology and mean-
ing. This section provides only a snippet of some
of the historical developments. Armed with these
theoretical perspectives, we now turn to an analysis
of how aspects of the empirical literature are inter-
preted within these models.

Lexical- and Semantic-Level Influences
on Word Recognition

In order to berrer understand the processes
underlying visual word recognition, researchers have
identified how the many statistical properties asso-
ciated with words (e.g., frequency of occurrence,
number of letters, imageability) influence perfor-
mance on different word recognition tasks. In this
next section, we selectively review the impact of the
most important lexical variables, which are quanti-
fied at the level of the whole word. There is also
a rich literature examining the functional sublexi-
cal units (i.e., representations smaller than a word,
such as letters, morphemes, and syllables) mediating
word recognition (Carreiras & Grainger, 2004), but
this is beyond the scope of the present chapter and
is covered in other chapters (see Taft, this volume,
and Perea, chis volume).

Word Frequency

The frequency with which a word appears in
print is the most robust predictor of word recog-
nition performance (Whaley, 1978). Across virtu-
ally all lexical processing tasks, participants respond
more quickly and accurately to high-frequency than
low-frequency words. The word-frequency effect
yields important insights into the nature of the
human information-retrieval mechanism (Murray
& Forster, 2004) and represents a fundamental con-
straint for all word recognition models. Despite its
apparent simplicity, the theoretical interpretation
of the word-frequency effect is far from straightfor-
ward (see also Kinoshira, this volume).

For example, one general class of lexical access
models involves a type of serial search or verifica-
tion process (Becker, 1980;  Forster, 1976; Paap,
McDonald, Schvaneveldt, & Noel, 1987), in which
candidates comparible with the initial analysis of
the stimulus are compared (or verified) against the
visually presented letter string in descending order
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of frequency. The influential interactive activation
model (e.g., Coltheart et al., 2001; McClelland &
Rumelhart, 1981; Perry et al., 2007) described ear-
lier assumes that the resting-level activations or acti-
vation thresholds of words (logogens in Morton’,
1970, nomenclature) vary with frequency of expo-
sure. High-frequency words are responded to faster
because they have higher resting-activation levels (or
lower thresholds), thereby requiring less stimulus
information to be recognized. Of course, within the
connectionist frameworks (e.g., Plaut, McClelland,
Seidenberg, & Patterson, 1996; Seidenberg &
McClelland, 1989) that rely on distributed, racher
than local, representations, frequency is coded by
the strength of the weights between input and out-
put representations. The Bayesian Reader model
(Norris, 2006), which is predicated on the assump-
tion that people recognize words in an optimal
manner, rakes a more functional approach to word-
frequency effects.  Specifically, word-frequency
cffects are a consequence of ideal observers taking
the prior probabilities of words (indexed by their
word frequencies) into account when resolving an
ambiguous input as the stimulus unfolds during
perception.

Researchers have also recently examined how dif-
ferent theoretical frameworks are able to account for
the form of the relationship between word-frequency
and word recognition measures. For example, a fre-
quency-ordered serial search model predicts a linear
relationship between the rank position of a word in
a frequency-ordered list and access times, whereas
the Bayesian Reader model predicts a logarithmic
relationship between frequency and response times
(Adeiman & Brown, 2008). The work by Murray
and Forster (2004) indicated that rank frequency
was a better predictor of response times than log-
transformed frequency, although this is qualified
by more recent analyses by Adelman and Brown
(2008) which suggest that word-frequency effects are
most consistent with instance models (e.g., Logan,
1988) where each encounter with a word leaves an
instance or trace in memory. The functional form of
the word-frequency effect has been particularly well
studied because researchers have developed large
databases of lexical-decision and speeded-pronun-
ciation performance while concurrently generating
much betrer estimates of word frequency within the
language (e.g., Brysbaert & New, 2009).

Although printed word frequency plays a central
role in lexical access, there is also ample evidence
thar word-frequency effeces partly implicate rask-
specific processes occurring after lexical access.



For example, in lexical decision, participants may
articularly attend to the familiarity and meaning-
fulness of the letter string to help them discriminate
berween words and nonwords. This emphasis on
familiarity-based information consequently exag-
gerates the frequency effect in lexical decision, com-
ared with pronunciation (Balota & Chumbley,
1984). Specifically, low-frequency words are more
' gimilar to nonwords on the dimension of familiar-
ity/meaningfulness than are high-frequency words.
Ir( is therefore more difficult to discriminate low-
frequency words from nonwords, thereby slowing
response times to low-frequency words and making
the frequency effect larger. Indeed, researchers who
have manipulated the overlap between words and
nonwords by varying nonword wordlikeness (e.g.,
bruta, brant, brane; see Stone & Van Orden, 1993)
report that such manipulations modulate the size
of the word-frequency effect. The important point
here is that frequency effects (and probably most
other psycholinguistic effects) do not unequivocally
reflect word recognition processes.

Length

Length here refers to the number of letters in a
word. In perceptual identification, lexical decision,
pronunciation, and reading, one generally observes
longer latencies for longer words (see New, Ferrand,
Pallier, & Brysbaert, 2006, for a review). Although
the length effect is partly attributable to processes
(e.g., early visual or late articulatory) that are beyond
the scope of word recognition models, simulations
indicate that the inhibitory influence of length on
pronunciation onset latencies is especially difficult
to reconcile with models that fully rely on parallel
processing (e.g., Plaut et al., 1996). Instead, length
effects are more compatible with models that incor-
porate serial processing, such as the DRC model
(Coltheart et al., 2001), which contains a sublexi-
cal pathway that assembles phonology in a serial,
letter-by-letter manner (Rastle & Coltheart, 2006).
In fact, Weekes (1997) found that length effects
are particularly large for nonwords compared with
words, consistent with the DRC model perspective
that length effects primarily reflect the infiuence of
the sublexical pathway.

Orthographic and Phonological Similarity
In their classic study, Coltheart, Davelaar,
Jonasson, and Besner (1977) explored the effects
of an orthographic similarity metric they termed
orthographic neighborhood size on lexical decision.
Orthographic neighborhood size is defined by the

number of orthographic neighbors associated with a
letter string, where an orthographic neighbor is any
word that can be obtained by substituting a single
letter of a target word (e.g., sand's neighbors include
band, send, said, and sank). Assuming that lexical
retrieval involves a comperitive process, one might
expect words with many neighbors to elicit more
competition and hence produce slower response
latencies. However, a review by Andrews (1997)
suggested that across a number of languages, both
lexical decision and pronunciation latencies are
generally faster for words with many neighbors, and
this effect is larger for low-frequency than for high-
frequency words. The facilitatory effects of neigh-
borhood size appear to be difficult to accommodate
within any model (e.g., DRC model) that includes
an interactive activation mechanism (McClelland
& Rumelhart, 1981), because there should be
more within-level inhibition to words with more
orthographic neighbors. In addition to number
of neighbors, researchers (e.g., Sears, Hino, &
Lupker, 1995) have also considered the influence
of neighborhood frequency (i.e., whether the target
word possesses a higher-frequency neighbor, see
Perea, this volume, for a discussion of such effects).

Like orthographic similarity, phonological simi-
larity is defined by counting the number of phono-
logical neighbors, that is, words created by changing
a single phoneme of a target word (c.g., gate's neigh-
hors include hate, get, and bair). Yates (2005) and
Yates, Friend, and Ploetz (2008a) have shown that
in lexical decision, speeded pronunciation, semantic
classification, and reading, words with many pho-
nological neighbors are responded to faster than
words with few phonological neighbors. There is
also evidence that as the number of phonological
neighbors overlapping with the least supported pho-
neme (i.e., the phoneme position within a word with
which the fewest phonological neighbors coincide)
increases, pronunciation latencies become faster
(Yates, Friend, & Ploetz, 2008b). Generally, these
results are consistent with the idea that words with
many phonological neighbors receive additional
activation within the phonological system, and help
provide uscful constraints for how phonology plays
a role in word recognition.

The original definition of neighborhood size is
somewhat restrictive. For example, a neighbor had
to be matched in length to the target and differ-
ing only by the substitution of a single letter or
phoneme. More expansive and flexible metrics of
neighborhood size have been proposed (see Perea,
this volume), including one based on the mean
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Levenshtein distance (i.c., the number of single letter
insertions, deletions, and substitutions needed to
convert one string of elements to another) between
a target word and its closest 20 neighbors in the lex-
icon. This measure (OLD20) has been shown to be
a particularly powerful predictor for longer words
(Yarkoni, Balota, & Yap, 2008).

Regularity and Consistency

As described ecarlier, the regularity of a word is
defined by whether it conforms to the most statis-
tically reliable spelling-to-sound correspondence
rules in the language. Hinr is regular because
it follows these rules, whereas pint is irregular
because it does not. Another theoretically impor-
tant variable that quantifies the relationship
between spelling and sound is consistency, which
reflects the extent to which a word is pronounced
like similarly spelled words. For example, £ind
is considered consistent because most similarly
spelled words (e.g., bind, find, hind, mind) are
pronounced the same way. In contrast, bave is
inconsistent because its pronunciation is differ-
ent from most similarly spelled words (e.g., cave,
gave, save). Generally, consistent words are rec-
ognized faster than inconsistent words, and the
consistency effect is stronger in speeded pro-
nunciation than in lexical decision, because the
pronunciation task emphasizes the generation of
the correct phonology (Jared, 2002). Such graded
consistency effects fall naturally out of the con-
nectionist perspective, where there is no sharp
dichotomy between items that obey the “rules”
and items that do not. Instead, lexical process-

ing reflects the statistical properties of spelling

o

sound mappings at multiple grain sizes (Plaur et
al., 1996). Consistency effects appear to pose a
special challenge for the DRC model (Coltheart
et al., 2001), which has some difficulty simulat-
ing them (Zevin & Seidenberg, 2006).

Although regularity and consistency correlate
highly, these dimensions are separable. Distinguishing
between these two variables is particularly valuable for
adjudicating between the rule-based DRC approach
(which predicts regularity effects) and the connec-
tionist approach (which predicts consistency effects).
Indeed, Cortese and Simpson (2000) crossed these
two variables factorially in a speeded pronunciation
experiment, and compared their results with simu-
lated data from three computational models of word
recognition. They observed stronger effects of consis-
tency than regularity, a pattern that was captured best
by Plaut et al.’s (1996) PDP model.
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The above-mentioned studies have all empha-
sized the consistency of the rime unit (i.c., the vowel
and consonant cluster after the onset of a syllable);
bind, find, hind, and mind are all rime neighbors of
kind. However, Treiman, Kessler, and Bick (2003)
showed that the pronunciation of a vowel can also
be influenced both by the consistency of its onset
and coda. Thus, consistency in pronunciation
appears to be sensitive to multiple grain sizes.

Semantic Richness

A growing number of reports in the litera-
ture indicate that word recognition is facilitated
for semantically richer words (i.e., words that are
associated with relatively more semantic informa-
tion; for reviews, see Balota, Ferraro, & Connor,
1991; Pexman, 2012). This is theoretically
intriguing because in virtually all models of word
recognition, it would appear that a word has to be
recognized before its meaning is obtained (Balora,
1990). This is at odds with available empirical evi-
dence which suggests that the system has access to
meaning before a word is fully identified, possibly
via feedback activation from semantic to ortho-
graphic and phonological units (Balota er al.,
1991; Pexman, 2012). Although the ultimate
goal of reading is to extract meaning from visu-
ally printed words, the influence of meaning-level
influences on word recognition remains poorly
understood.

A number of dimensions have been identified
that appear to tap the richness of a word’s semantic
representation, including the number of semantic
features associated with its referent (McRae, Cree,
Scidenberg, & McNorgan, 2005); its number of
semantic neighbors (Shaoul & Westbury, 2010);
the number of distinct first associates elicited by the
word in a free-association task (Nelson, McEvoy, &
Schreiber, 1998); imageability, the extent to which
a word evokes mental imagery (Cortese & Fugett,
2004); number of senses, the number of meanings
associated with a word (Miller, 1990); body-object
interaction, the extent to which a human body can
interact with a word’s referent (Siakaluk, Pexman,
Aguilera, Owen, & Sears, 2008); and sensory expe-
rience ratings, the extent to which a word evokes
a sensory or perceptual experience (Juhasz & Yap,
2013). Across tasks, words from denser semantic
neighborhoods, which possess more meanings and
evoke more imagery, and whose referents are associ-
ated with more features or are easier for the human
body to interact with are recognized faster (e.g.,
Yap, Pexman, Wellsby, Hargreaves, & Huff, 2012).



1mporraml}, the different richness variables
account for unique (i.e., nonoverlapping) variance
in word recognition performance (Yap, Pexman, et
al., 2012), implying that no single richness dimen-
sion (and its associated theoretical framework) can
adequatcly explain how meaning is derived from
print. Instead, semantic memory is best conceptu-
alized as multidimensional (Pexman, Siakaluk, &
Yap, 2013).

In addition ro the richness dimensions described
above, the emotional walence (positive, neutral,
negative) and arousal of a word influence lexical
decision and speeded pronunciation performance.
For example, smake is a negative, high-arousal
word, while sleep is a positive, low-arousal word.
A number of early studies suggested that nega-
tive, compared with neutral and posirive, stimuli
are responded to more slowly. This slowing is con-
sistent with the idea that negative stimuli attract
attention in early processing, and more time is
needed to disengage attention from these stimuli
before a lexical decision or pronunciation response
can be made (see Kuperman, Estes, Brysbaerr, &
Warriner, 2014, for a review). However, this con-
clusion is qualified by a meta-analysis revealing
that the negative and neutral words used in the
studies were not always well matched on lexical
characteristics (Larsen, Mercer, & Balota, 2006).
Although the results of better-controlled studies
are somewhat mixed, a recent large-scale analy-
sis of valence and arousal effects for over 12,000
words, which controlled for many lexical and
semantic factors, suggests that valence and arousal
exert independent and monotonic effects, such
that negative (compared with positive) and arous-
ing (compared with calming) words are recognized
more slowly (Kuperman et al., 2014).

Finally, an intriguing aspect of the semanric
richness literature involves the extent to which is
that the strength of these effects is modulated by
the specific demands of a lexical processing task
(Balota & Yap, 2006). For example, semantic
richness accounts for much more item-level vari-
ance in the category verification task than in rasks
where semantic processing is not the primary basis
for responding. Yap, Tan, Pexman, and Hargreaves
(2011) also found that words with more senses
were associated with faster lexical decision times
but less accurate category verification perfor-
mance. This result is consistent with the notion
that multiple meanings can hurt performance in
a task that requires participants to resolve the spe-
cific meaning of a word.

Context/Priming Effects

Thus far we have described variables that influ-
ence isolated word recognition. There is also a rich
literature directed at how different contexts or
primes influecnce word recognition processes. In
a typical priming paradigm, two letter strings are
presented successively that have some dimension of
similarity. Specifically, the two strings might be mor-
phologically (zomhmo—TOUC'H"), orthographically
(couch-TOUCH,), phonologically (much-TOUCH),
or semantically/associativelv related (feel- TOUCH).
Primes can either be, unmasked (i.c., consciously
available) or masked (i.c., presented briefly to mini-
mize conscious processing). The key advantage of
the masked priming paradigm is that participants
are usually unaware of the relationship between the
prime and the target, thereby minimizing strategic
effects (Forster, 1998: see also Kinoshita & Lupker,
2003). In this section, we limit our coverage to
phonological, morphological, and semantic prim-
ing effects. Kinoshita (this volume) and Perea (chis
volume) provide excellent reviews of orthographic
priming effects and discuss how this important
work constrains models that address how readers
code letter position in words (see also Frost, this
volume).

Phonological Priming Effects

What is the role of phonological codes in visual
1998)? Do these codes
automatically precede and constrain the identifica-
tion of words, or is phonology generated after lexi-
cal access? These controversial questions have been
extensively investigated with the masked priming
paradigm and other paradigms (see Halderman,
Ashby, & Perferti, 2012, for a review). For example,
Lukarela and Turvey (2000) reported that compared
with a control prime (e.g., clep), phonologically
related primes (e.g., Afp) facilitated lexical decision
responses to targets (i.e., CLIP), even when primes
were presented for only 14 ms. Indeed, in an impor-
tant meta-analysis of masked phonological priming
studies in English, Rastle and Brysbaert (2006) con-
cluded that there were small but reliable effects of
perceptual identifi-

word recognition (Frost,

masked phonological priming in
cation, pronunciation, and luﬂcal decision. To con-
firm this, Rastle and Brysbaert (2006) conducted two
masked priming experiments that demonstrated that
words (e.g., GROW) were recognized 13 ms faster on
average when they were preceded by phonologically

similar primes (groe) than by 01thogmphlc controls
(groy). Collectively, these results provide compelling
evidence for an early and pervasive influence of
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phonological processes in word recognition. These
phonological processes potentially help in stabiliz-
ing the identity of words so that they can be per-
ceived accurately (Halderman et al., 2012; see also
Pollatsek, this volume).

Morphological Priming Effects

Morphemes are the smallest units of meaning in
words, and many English words are multimorphe-
mic. An important debate in the literature concerns
the extent to which the morphemic constituents in
a word serve as access units during word recognition
(see Taft, this volume). For example, are morpho-
logically complex words such as painter automati-
cally decomposed into their morphemic subunits
(ie., paint + er) prior to lexical access (Taft &
Forster, 1975) or does each complex word have its
own representation? Relatedly, does the morpholog-
ical decomposition procedure distinguish berween
inflected words that are more semantically zranspar-
ent (i.e., the meaning of the word can be predicted
from its constituents, e.g., sadness) and words that
are more semantically opaque (e.g., department)?
The answers to such questions help shed light on
the representations and processes underlying mor-
phological processing.

To better delineate the time course of morpho-
logical processes, researchers rely heavily on the
masked morphological priming paradigm. Using
this tool, they have established that recognition of a
target word (e.g., SAD) is facilitated by the masked
presentation of morphologically related words (i.e.,
sadness) (Rastle, Davis, Marslen-Wilson, & Tyler,
2000). By using appropriate controls, Rastle et al.
(2000) have shown that such morphological prim-
ing effects cannot be simply attributed to semantic
or orthographic overlap between primes and targets,
and hence provide compelling evidence for early
and obligatory decomposition of morphologically
complex words into morphemes prior to lexical
access.

Interestingly, Rastle, Davis, and New (2004)
have also reported that masked morphological
priming effects are equivalent in magnitude for
transparent (e.g., cleaner—CLEAN) and opaque
(e.g., corner—CORN) prime-target pairs,’ suggest-
ing that the initial morphological decomposition
process is blind to semantics and based entirely on
the analysis of orthography. That being said, the
role of semantics in morphological processing is
still not entirely clear. A meta-analysis of the litera-
ture revealed a small but reliable effect of semantic
transparency. That is, transparent primes facilitate
VISUAL WORD RECOGNITION
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target recognition to a greater extent than opaque
primes (Feldman, O’Connor, & del Prado Martin,
2009), consistent with an early semantic influence
on morphological processing (but see Davis &
Rastle, 2010).

These patterns are theoretically important
because they challenge the connectionist frame-
works which posit that morphemic effects emerge
via interactions among orthography, phonology,
and semantics (e.g., Gonnerman, Seidenberg, &
Andersen, 2007); such frameworks predict less
priming for opaque than for transparent prime-tar-
get pairs (Plaut & Gonnerman, 2000). For a more
extensive discussion of the morphological process-
ing literature, readers are encouraged to consult

Diependacle, Grainger, and Sandra (2012).

“Semantic” Priming Effects

The semantic priming effecr refers to the robust
finding that words are recognized faster when
preceded by a semantically related prime (e.g.,
cat-DOG) than when preceded by a semanti-
cally unrelated prime (e.g., mar-DOG) (Meyer &
Schvaneveldt, 1971).2 The semantic priming litera-
ture provides important insights into the architec-
ture of the mental lexicon and the processes used
to retrieve information {rom that nerwork. The
“semantic” in semantic priming effect is largely an
expository convenience (McNamara, 2005), since
the effect may reflect an associative relationship
between the two words rather than an overlap in
their semantic features. For example, dog and car
share both a semantic and associative relationship,
whereas mouse and cheese primarily share an associa-
i tonship. While a review by Lucas (2000)
suggests there are instances where semantic priming
effects truly reflect shared semantic information, a
follow-up review by Hutchison (2003) yields the
more guarded conclusion that a simple associative
account can accommodate most of the priming
literature. What else do we know about semantic
priming? :

Related primes facilitate target recognition even
when primes are heavily masked and cannot be
consciously identified (Balota, 1983; Fischler &
Goodman, 1978), suggesting that the meaning of a
prime word can be processed, even if it is not con-
sciously identifiable. This claim is consistent with
an intriguing phenomenon known as the mediated
priming effect. In mediated priming, fion is able to
prime STRIPES (Balota & Lorch, 1986). Although
there is no obvious direct relationship between the
two words, priming is able to occur through the



mediating concept zzger. These results are consistent
with the classic study by Neely (1977), who dem-
onstrated that semantic priming effects can occur
at short stimulus onset asynchronies even when
attention is directed to a different area of semantic
memory.

A number of theoretical mechanisms have been
proposed to explain semantic priming; these mecha-
nisms are not mutually exclusive and may well oper-
ate together (see McNamara, 2005, for a review).
Automatic spreading activation (Posner & Snyder,
1975) is the canonical explanation for semantic
priming. That is, a prime (e.g., cat) automatically
preactivates related nodes (e.g., DOG) via associa-
tive/semantic pathways, facilitating recognition of
these related words when they are subsequently pre-
sented (see Collins & Loftus, 1975). Priming may
also partly reflect expectancy, or the strategic genera-
tion of potential candidates for the upcoming targer
(Becker, 1980); facilitation is observed when the
expectancy is correct. Finally, there is evidence that
priming effects in the lexical decision task implicate
postlexical decision processes. Specifically, partici-
pants may engage in backward semantic check-
ing from the target to the prime (Neely, Keefe, &
Ross, 1989), since the absence or presence of a
prime-targer relationship is diagnostic of the tar-
gets lexicality (nonwords are never related to the
primes). Space constraints preclude a comprehen-
sive survey of this interesting and important area of
research, but readers are directed to Neely (1991)
and McNamara (2005) for excellent reviews of the
semantic/associative priming literature.

Joint Effects of Variables

Heretofore we have emphasized the main effects
of variables. However, researchers are typically more
interested in the extent to which multiple variables
interact to influence word recognition performance.
Indeed, such interactions are particularly useful
for constraining theoretical models. For example,
stimulus length interacts with orthographic neigh-
borhood size, such that there is an increasing facili-
tatory effect of orthographic neighborhood size for
long, compared to short, words (see Balota et al.,
2004). In addition, low-frequency words produce
larger effects of both orthographic neighborhood
size and length than high-frequency words (Balota
etal,, 2004) in the speeded pronunciation task, but
not in the lexical decision task. It is possible that
the reduced effects of variables for high-frequency
words may reflect better established lexical represen-
tations for these items.

There is also considerable evidence for interac-
tions within the priming literature. For example,
semantic priming typically interacts with word
frequency and stimulus quality, such that priming
effects are larger for low-frequency (e.g., Becker,
1979) and degraded (Becker & Killion, 1977) word
targets. However, stimulus quality and word fre-
quency produce robust additive effects (Stanners,
Jastrzembski, & Westbrook, 1975) in the lexi-
cal decision task but not in either the word pro-
nunciation or semantic classification task (Yap &
Balota, 2007). There is also recent evidence that
priming produces additive effects with the difficulty
of the nonword distracters in the lexical decision
task (Lupker & Pexman, 2010). Traditional priming
accounts (e.g., spreading activation, expectancy) are
too simple to capture this complex constellation of
additive and interactive effects (McNamara, 2005),
and it may be necessary to turn to models that pos-
sess multiple stages or levels of lexical-semantic
representation (for an example, see Yap, Balota, &
Tan, 2013). An important next step within com-
putational modeling will be the development of
models that can account for both the additive and
interactive effects of targeted variables (see Plaut &
Booth, 2000, 20006, for a potential framework, and
also Borowsky & Besner, 2006, for a discussion of
limitations of this approach).

Newer Approaches and Analytic Tools
in Visual Word Recognition Research
Megastudies Versus Factorial Studies
of Word Recognition

The most common experimental design in word
recognition research is the factorial design, where
independent variables of interest are manipulated
and extrancous variables are controlled for. Although
this approach is useful, like all approaches, it has
some limitations (see Balota, Yap, Hutchison, &
Cortese, 2012, for a review). The megastudy
approach allows the language to define the stimuli,
rather than the experimenter selecting stimuli based
on a limited set of criteria. In megastudies, research-
ers examine word recognition for very large sets of
words, such as virtually all English monosyllabic
words (Balota et al., 2004; Treiman, Mullennix,
Bijeljac-Babic, & Richmond-Welty, 1995) or mul-
tisyllabic monomorphemic words (Yap & Balota,
2009). In addition to identifying the unique predic-
tive power of a large set of targeted variables, along
with their interactive effects (Balota et al., 2004),
megastudies have proven valuable for adjudicating
between computational models of word recognirion
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(Perry et al., 2007), comparing competing metrics
of word frequency (Brysbaert & New, 2009), evalu-
ating the impact of novel psycholinguistic variables
(Juhasz & Yap, 2013; Yarkoni et al., 2008), explor-
ing potential nonlinear functional relationships
between factors and word recognition performance
(New et al., 2006), and investigating the role of
individual differences in word recognition (Yap,
Balota, Sibley, & Ratcliff, 2012).

The megastudy approach is aided by the avail-
ability of freely accessible online databases con-
taining lexical characteristics and behavioral data
for large sets of words. For example, the English
Lexicon Projcct (ELP; Balota er al., 2007; heep://
elexicon.wustl.edu) provides lexical decision and
speeded pronunciation measures for over 40,000
English words, along with a search engine thar
indexes a wide variety of lexical variables (see
also the British Lexicon Project; Keuleers, Lacey,
Rastle, & Brysbaert, 2011). The ELP has stimu-
lated a flurry of related megastudies in other lan-
guages, including the French Lexicon Project
(Ferrand et al., 2010), the Dutch Lexicon Project
(Keuleers, Diependacle, & Brysbaert, 2010),
Malay Lexicon Project (Yap, Rickard Liow, Ja.hl, &C
Faizal, 2010), and the Chinese Lexicon Project
(Sze, Rickard Liow, & Yap, 2014). Rescarchers
have been turning to crowd-sourcing tools such
as Amazon’s Mechanical Turk (Mason & Suri,
2012) or smartphone apps to rapidly collect norms
(e.g., concreteness ratings; Brysbaert, Warriner, &
Kuperman, 2014) and behavioral data (Dufau er

al, 2011). Researchers have also recently started

developing databases that explore the influence
of context on word recognition. For example, the
Semantic Priming Project (Hutchison et al., 2013;
hetp://spp.montana.edu) and the Form Priming
Project (Adelman et al., 2014), respectively, serve
as behavioral databases of semantic priming and
masked form priming performance.

While one might be concerned that large-scale
data may not be sensitive to more subtle manipula-
tions (e.g., the interaction between frequency and
& Seidenberg, 2009),
recent analyses indicate that dacabases such as the
English Lexicon Project reproduce the standard
effects in the literature (Balota et al., 2012). Thus
megastudies provide a useful complement to the
factorial studies in the literarure.

consistency; Sibley, Kello,

Analyses of Response Time Distributions
In the overwhelming majority of studies in word
recognition, researchers compare the mean response
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time across different conditions to determine
whether their data are consistent with the predicted
hypotheses. To the extent that empirical response
time distributions are symmetrical and experimen-
tal manipulations primarily shift distributions, this
approach works quite well. However, empirical dis-
tributions are virtually always positively skewed,
and experimental effects can both shift and modu-
late the shape of a distribution (Heathcote, Popiel,
& Mewhort, 1991). Thus, relying solely on analyses
comparing means is potentially both inadequate and
misleading (Heathcote er al., 1991). Fortunately, a
number of approaches have been developed for
understanding the influence of variables on the
underlying response time distribution. Thc first
and ultimately optimal method is to fir the data
to a compurational model (e.g., diffusion model:
Ratcliff, 1978) that is able to generate specific pre-
dictions about experimental effects on the charac-
teristics of the response time distribution. In the
absence of such a model, researchers can (1) evaluate
the influence of manipulations on the parameters of
a mathemarical function (e.g., the ex-Gaussian func-
tion, the sum of the normal and exponential distri-
bution) fitted to an empirically obtained response
time distribution or (2) generate descriptive plots
(e.g., quantile plots) of how a manipulation differ-
entially affects different regions of the distribution.
By augmenting conventional means-based
analyses with distributional methods, researchers
have gained finer-grained insights into the pro-
cesses underlying isolated word recognition and
semantic priming (see Balota & Yap, 2011, for a
selective review). Consider the classic semantic
priming effect, in which participants recognize
CAT ftaster when it is preceded by dog than by an
unrelated word like dig. Across a series of stud-
ies, there is evidence that the semantic priming
effect in highly skilled readers is purely mediated
by distributional shifting (Balota, Yap, Cortese, &
Watson, 2008). That is, the benefit afforded by
a related prime is constant, regardless of rtarget
difficulty (for a replication in masked semantic
priming, see Gomez, Perea, & Ratcliff, 2013)
Distributional shifting is most consistent with the
idea that for such readers priming reflects rela-
tively modular processes, whereby primes preac-
tivate related words through automatic spreading
activation and provide readers with a processing

¢ad-start waen ne words are

sented. When word identification is compromised
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in some way, priming is no longer entirely medi-
ated by a shift; instead, priming effects increase



monotonically as target difficulty increases.
One sees this pattern when targers are visually
degraded (Balora et al., 2008; Yap er al., 2013) or
when less skilled readers are processing unfamiliar
low-frequency words (Yap, Tse, & Balota, 2009).
That is, when target identification is effortful, read-
ers can strategically retrieve prime information
to aid in resolving the target (Thomas, Neely, &
O’Connor, 2012).

Although it is tempting to map distributional
parameters or aspects of the response time distribu-
tion onto specific cognitive processes, it is impor-
tant not to do this in the absence of converging
evidence (Matzke & Wagenmakers, 2009). The key
point here is that there is a growing literature which
suggests that one can gain important insights into
lexical processes by moving beyond simple measures
of central tendency and considering response time
distributional analyses.

Individual Differences
Empirical work and models of word recogni-
tion have traditionally focused on group-level
performance (but see Zevin & Seidenberg, 2006,
for an exception). However, there is compelling
evidence that individual differences in reading
skill can modulate word recognition performance
(see Andrews, this volume; see also Yap, Balota, et
al, 2012, for a review). For example, vocabulary
knowledge appears to moderate the joint effects
of priming and word frequency (Yap et al., 2009).
For readers with smaller vocabularies, priming
and word frequency interact; priming effects
are larger for low-frequency words. In contrast,
highly skilled readers with a larger vocabulary
produce robust main effects of priming and word
frequency but no interaction.

The advent of large datasets containing indi-
vidual participant data makes it possible to
explore individual differences with very large
samples. For example, in their analysis of the
trial-level lexical decision and speeded pronun-
ciation data contributed by over 1,200 par-
ticipants in the English Lexicon Project, Yap,
Balota, et al. (2012) made a number of note-
worthy observations. Importantly, Yap, Balota,
etal. reported considerable within- and between-
session reliability across distinct sets of items with
respect to overall mean response time, response
time distributional characteristics, diffusion
model parameters, and effects of theoretically
important variables such as word frequency and
length. Readers with more vocabulary knowledge

showed faster, more accurate word recognition
performance and attenuated sensitivity to stimu-
lus characteristics. Collecrively, results such as
these suggest that participants are associated with
Jdatwely stable distributional and processing pro-
files that extend beyond average processing speed.
Moving forward, it will be increasingly important
to develop models that can capture both group-
level performance and the variability across indi-
vidual readers.

Concluding Remarks

The research in visual word recognition pro-
vides exciting insights into the early stages of read-
ing and has been the focus of important principles
in cognitive modeling, including interactive acti-
vation, rule-based coding, connectionist modeling,
and more recently, notions of optimal perceivers
from a Bayesian perspective. Although there has
been considerable progress, different tasks bring
with them rtask-specific operations that can influ-
ence the results. Hence one must be cognizant of
the interplay between rask-general Icmcal processes
and task-specific processes when considering this
literature. Finally, because of space constraints, the
reader should be reminded that this is at best a brief
snapshot of the visual word recognition literature,
and we have focused primarily on behavioral stud-
ies in adult readers. For example, research in cogni-
tive neuroscience continues to provide important
constraints for word recognition models (Taylor,
Rastle, & Davis, 2013; see Woollams, this vol-
ume). We anticipate that visual word recognition
will continue to be at the heart of fundamental
breakthroughs in understanding how people read.

Note

1 Rastle and colleagues do not distinguish berween seman-
tically opaque prime-target pairs that share both an ety-
mological and surface morphological relationship (e.g.,
department-DEPART) and pairs that share only the surface
relationship (e.g., corner-CORN), because such a distinction
is difficult 1o reconcile with a plausible theory of language
acquisiion (Rastle & Davis, 2003). However, there are
researchers (e.g., Longrin, Segui, & Hallé, 2003) who make
this distinction and would consider corner a pseudoaffixed
word.

2 The extent to which two words (e.g., car and dog) are related
is typically caprured by free association norms (e.g., Nelson
et al., 1998), which are derived from participants’ responses
to cue words. An alternarive approach, which assumes that a
word’s meaning is tied to the contexts it appears in, examines
the co-occurrence of words in a large text corpus (Landauer
& Dumais, 1997). Word pairs which that co-occur more fre-
quently are considered to be more strongly related (Jones,
Kintsch, & Mewhort, 2006).
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