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Research on group differences in response latency often has as its goal the detection of Group X
Treatment interactions. However, accumulating evidence suggests that response latencies for different
groups are often linearly related, leading to an increased likelihood of finding spurious overadditive
interactions in which the slower group produces a larger treatment effect. The authors propose a
rate-amount model that predicts linear relationships between individuals and that includes global
processing parameters based on large-scale group differences in information processing. These global
processing parameters may be used to linearly transform response latencies from different individuals to
a common information-processing scale so that small-scale group differences in information processing
may be isolated. The authors recommend linear regression and z-score transformations that may be used
to augment traditional analyses of raw respounse latencies.

Measurement of response latency to perform simple judgments
has played an important role in research attempting to identify and
isolate fundamental mental operations (Donders, 1868/1969; Luce,
1986; Posner, 1978; Sternberg, 1969; Townsend & Ashby, 1983;
Townsend & Schweickert, 1989). Experimental tasks within this
tradition are typically performed quickly (i.e., in less than 2 s) and
accurately (i.e., above 90% accuracy) by the average participant.
The fundamental assumption underlying this scientific endeavor is
that differences in response latencies across experimental condi-
tions reflect differences in the amount of time taken to perform
various fundamental mental operations under various experimental
conditions. Given this view, it seems natural to propose that
physical time is the appropriate scale of measurement to probe the
mental architecture. Townsend (1992), for example, has argued
that when used appropriately, response latency “can be employed
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in a way that is nothing more nor less than the application of
physical time to psychological science” (p. 107). The assumption
of a physical scale of measurement does not, however, guarantee
that equivalent psychological effects for different individuals will
necessarily lead to equivalent effects in response latencies, mea-
sured in physical units such as milliseconds, for these same
individuals.

Cognitive Speed

To see how this might be the case, consider two hypothetical
individuals, with the first individual taking twice as long as the
second individual, minus a constant of 300 ms, to produce a
response across a wide range of cognitive tasks and/or experimen-
tal conditions (see Cerella, 1990, 1991; Myerson, Ferraro, Hale, &
Lima, 1992; Salthouse, 1985, for similar arguments). That is, the
average response latency for the slower of these two hypothetical
individuals will be two times that of the faster individual minus
300 ms for any given experimental condition. Assume further that
these two individuals have just completed a semantic priming
experiment, with the faster individual producing average response
latencies of, say, 400 ms and 500 ms in the related and unrelated
conditions, respectively (i.e., a 100-ms semantic priming effect).
Figure 1 presents a plot of the results of our hypothetical priming
experiment. As can be seen, there is an overadditive interaction
such that the slower individual has produced a larger priming
effect. Because the slope of the linear function relating the re-
sponse latencies of the slower individual to those of the faster
individual is 2, the effect size for the slower individual will
generally be twice that of the faster individual (i.e., a 200-ms
semantic priming effect).

If the results of the hypothetical semantic priming study de-
scribed above were to be viewed in isolation, and if response
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Figure 1. Interaction plot of mean latencies for two individuals whose
performance is constrained by a constant linear relationship across exper-
imental conditions.

latency were to be taken as a physical scale of measure of funda-
mental mental operations common to beth individuals, then one
might conclude that the first individual has exhibited twice as
much semantic priming as the second individual. However, this
view does not take the general systematic relationship between the
individuals into account. Given that the slower individual will
produce effects that are twice as large as those for the faster
individual across a wide range of tasks, a more general account
would be that the two individuals show semantic priming effects
that are psychologically equivalent. The true difference between
the two hypothetical individuals is one of overall information-
processing rate, what we term cognitive speed. As described later,
the slope of the linear relationship between the response latencies
of the slower and faster individuals can be viewed as an indication
of their relative cognitive speeds (i.e., the slope of 2 indicates that
the slower individual processes information at twice the rate of the
faster individual). Of course, in any real-world situation, individ-
uals might differ both in terms of overall processing speed and in
terms of some specific component operation. Our approach sug-
gests that specific differences will remain in response latencies
appropriately rescaled to correct for general differences.

Amount of Information Processing

The intercept of the linear relationship between the response
latencies of the two hypothetical individuals is determined by the
amount of information processing performed that is constant
across various experimental conditions for each of the individuals
in our hypothetical example. We must defer discussion of why this
is the case until after presentation of an individual-differences
model that includes both processing speed and amount parameters.
For now, consider the idea that there are significant individual
differences in the amount of information processing performed in
making a particular decision to respond (e.g., pressing one of two
potential response buttons) in a typical cognitive task. Indeed, two
individuals with the same cognitive speed may reliably produce

different response latencies because they differ in the amount of
information processing performed to reach a point where a deci-
sion can be made to choose and initiate a particular response.

Group Differences in Response Latency

If we expand the arguments above to two different groups of
interest, the simple example above illustrates three important
points regarding the interpretation of studies using response la-
tency as a dependent measure. First, Group X Treatment interac-
tions are not easily interpreted in the face of differences in overall
latency (e.g., Cerella, 1990, 1991; Salthouse, 1985). Second,
knowledge of a systematic relationship between latencies pro-
duced by different individuals can provide the basis for a correc-
tion of latencies for individual differences in information-
processing rate and amount. As discussed later, correction for
individual differences in information-processing rate and amount
will help reduce false positives in studies designed to detect
specific group differences in fundamental mental operations. The
model we propose predicts that response latency scales for various
individuals are general linear transformations of each other in
much the same way that the Fahrenheit and Centigrade scales of
temperature are linear transformations of each other requiring both
an additive and a multiplicative constant. Third, it may be the case
that group differences in information-processing rate and amount
will be as interesting as more specific group differences in a
particular mental operation.

Overview

We begin by reviewing evidence for a systematic (generally
linear) slowing of response latencies across various groups of
interest. We then consider a general framework for understanding
the large-scale structure of response latencies across a wide range
of tasks and individuals in terms of the rate and amount of
cognitive processing performed. Assuming that information pro-
cessing in the human nervous system is based directly on physical
processes, we can define the same relationship between time, rate,
and amount that must hold for any physical process. That is, time
to complete a task (i.e., response latency) is equal to the ratio of the
amount of processing performed and the rate (i.e., cognitive
speed). The resultant multiplicative rate—amount model of re-
sponse latency imposes a specific structure on the expected value
of response latencies and can act as a theoretical bridge to guide
our choice of method to transform response latencies to a scale that
is equivalent across individuals with respect to overall cognitive
speed and processing amount.

In this article, we discuss the potential methods for obtaining
estimates of cognitive speed and processing amount and the the-
oretical importance of documenting and understanding large-scale
group differences in information-processing rate and amount
across a wide range of tasks. These procedures allow for the
identification of more global group differences than does the more
traditional focus on fundamental mental operations. For example,
the relationship between older adult latencies and younger adult
latencies has been shown to differ within broad classes of process-
ing, such as lexical versus nonlexical tasks (e.g., Hale, Lima, &
Myerson, 1991; Lima, Hale, & Myerson, 1991), or with differen-
tial involvement of working memory (e.g., Mayr & Kliegl, 1993).
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Although we use examples taken from the cognitive aging litera-
ture to motivate our discussion, there is increasing evidence that
the response latencies of many diverse groups are systematically
related. Therefore, the discussion that follows should be of general
interest to those researchers (e.g., developmental psychologists,
gerontologists, and cognitive neuropsychologists) interested in ex-
amining group differences in response latencies. Furthermore, the
present article should also be of interest to those interested in
individual and group differences in information-processing rate
and amount. We have chosen the cognitive aging literature both
because of our familiarity with it and because this literature has
been struggling with issues regarding group differences in re-
sponse latency to perform cognitive tasks (e.g., Cerella, 1985).

Finally, even though a primary emphasis is on a theoretically
based approach to transforming response latencies to control for
individual differences in cognitive speed and processing amount, it
should be noted that we are most certainly not advocating an
extreme view that would preclude investigators from analyzing
raw response latencies in a traditional manner. In fact, we encour-
age comparison of similar analyses performed on raw and trans-
formed response latencies. Such comparisons can provide impor-
tant information regarding the most appropriate interpretation of
observed group differences in response latency.

Systematic Group Differences in Response Latency:
Brinley Plot Evidence

A number of studies have documented the fact that older adults’
response latencies are systematically slower than younger adult
latencies across a wide range of tasks (e.g., Cerella, 1985; Cerella,
Poon, & Williams, 1980; Hale et al., 1991; Lima et al., 1991;
Salthouse, 1985; Smith, Poon, Hale, & Myerson, 1988; see
Bashore, 1994, for a recent review). Table 1 lists several meta-

Table 1

analytic studies demonstrating strong linear relationships between
response latencies for younger and older adults.

Lima et al. (1991) obtained a sample of 19 studies of lexical
processing in younger and older adults appearing in 11 journals
during the years 1975 to 1987 and 7 additional studies on non-
lexical processing appearing in the Journal of Gerontology during
the years 1975 to 1984. Figure 2 is a scatter plot (often called
Brinley plots, after Brinley, 1965) of older adult group means as a
function of younger adult group means in the same experimental
conditions, adapted from the results reported by Lima et al.

An examination of Figure 2 confirms a strong linear relationship
between younger and older adult response latency that is compel-
ling both to the naked eye and in terms of the proportion of overall
variance accounted for (* = .91). It is worth noting that Figure 2
is based on 26 different studies (and presumably 26 different
samples of younger and older adults). Brinley plots of the data
generated by the same sample of older and younger adults partic-
ipating in all experimental conditions often provide linear fits that
account for 98% or more of the variance (e.g., Balota & Ferraro,
1992; Brinley, 1965; Hale et al., 1991; Madden, Pierce, & Allen,
1993; Maylor & Rabbitt, 1994; Mayr & Kliegl, 1993; Salthouse &
Somberg, 1982). In fact, the pattern of slowing in normal aging has
been found to be systematic enough to provide good fits to well-
specified quantitative models (e.g., Cerella, 1985; Myerson, Hale,
Wagstaff, Poon, & Smith, 1990; see Cerella, 1990, and Cerella &
Hale, 1994, for reviews).

Evidence for a systematic general slowing factor among an
increasingly wide range of populations of interest is accumulating
in the literature. Studies of normal aging (e.g., Cerella et al., 1980,
Hale et al.,, 1991), closed-head injured patients (e.g., Ferraro,
1996), individuals with Alzheimer’s disease (e.g., Nebes & Brady,
1992; Nebes & Madden, 1988), individuals under the influence of

Parameter Estimates and Proportion of Accounted Variance for Linear Brinley Functions for
Conditions in Which Younger Adult Latencies Are Less Than 2 s

Study No. of experiments”  No. of conditions Formula® 7
Meta-analytic
Cerella (1985)°
Lexical and nonlexical tasks 14 94 O = 1.54Y — 150¢ .96
Lima et al. (1991)
All tasks
Lexical decision tasks 10 90 O = 1.48Y — 68 95
Other lexical tasks 11 76 0 =147Y — 101 97
Nonlexical tasks 8 59 O = 2.05Y — 385 92
Nebes & Brady (1992)
Lexical and nonlexical tasks 10 61 O =137Y - 77 90
Empirical
Hale et al. (1991)
Four nonlexical tasks 1 11 O = 2.15Y —- 413 .99
Hale et al. (1995)
Seven nonlexical tasks 1 22 O = 2.74Y —- 704 .98
Madden et al. (1993)
Lexical decision 4 106 O =1.58Y — 183 91

Note. O = older adult; Y = younger adult.

 An experiment indicates a specific sample of participants and may contain more than one task. ° Functions
are expressed in millisecond units. € Two conditions with younger adult latencies between 2 and 3 s

included. ¢ Function estimated from Cerella (1990).
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Figure 2. Scatter plot of older adult mean latency as a function of
younger adult mean latency from the same experimental conditions. Data
are from “How General Is General Slowing? Evidence From the Lexical
Domain,” by S. D. Lima, S. Hale, and I. Myerson, 1991, Psychology and
Aging, 6, pp. 416-425. Copyright 1991 by the American Psychological
Association. Reprinted with permission.

alcohol (e.g., Maylor, Rabbitt, James, & Kerr, 1992), individuals
differing in intelligence (e.g., Vernon & Jensen, 1984), and healthy
children (e.g., Hale, Fry, & Jessie, 1993; Kail, 1991, 1992} suggest
that groups of interest often produce response latencies that are
generally slowed and systematically related to latencies from some
reference group.

However, general slowing is not sufficient to explain the full
range of age-related differences in response latencies reported in
the literature (see Fisk & Fisher, 1994, for a detailed discussion of
this issue); some component processes may be affected more by
age than others (e.g., Balota, Black, & Cheney, 1992; Balota &
Ferraro, 1993, 1996; Cerella, 1985; Duchek, Balota, Faust, &
Ferraro, 1995; Fisk, Fisher, & Rogers, 1992; Hale, Myerson, &
Wagstaff, 1987; Lima et al., 1991; Madden et al., 1993; Maylor &
Rabbitt, 1994; Mayr & Kliegl, 1993; Spieler, Balota, & Faust,
1996). Thus, the question of how to detect deviations from general
slowing has become increasingly important (e.g., Cerella, 1991;
Fisher & Glaser, 1996; Fisk et al., 1992; Madden, Pierce, & Allen,
1992; Myerson, Wagstaff, & Hale, 1994; Salthouse, 1992). One
general approach suggested by a number of researchers is to use
statistical inference tests in which the null hypothesis is shifted
away from the assumption of null group differences and toward the
assumption of general slowing (e.g., Burke, White, & Diaz, 1987;
Kliegl & Mayr, 1992; Madden et al., 1993; Salthouse, 1992).
However, analyzing deviations from a general slowing function in
terms of raw (untransformed) units of time is problematic in that
the same issues regarding the effects of individual differences in
information-processing rate and amount that apply to raw response
latencies will also apply to raw deviation scores. In the present
article, we propose a psychometric model of response latency that
predicts the appropriate general slowing function and we examine
several candidate transformations of raw response latency de-
signed to control for individual differences in overall level of
response. This will have the logical effect of removing group

differences in cognitive speed and processing amount and is there-
fore logically equivalent to a null hypothesis that assumes system-
atic general slowing between groups. However, deviations from
the general slowing function, now in appropriately transformed
units, will remain. Before presenting the details of such transfor-
mations, we first present our proposed psychometric model of
response latency.

Information-Processing Rate and Amount

Processing models that include the product of rate and amount
of information processing have found widespread usage in psy-
chology. Hick (1952) assumed that the amount of information
processing required for an optimal decision maker in a relatively
simple forced-choice task was completely determined by the in-
formation content of the stimulus set (i.e., as specified by infor-
mation theory [Shannon, 1948}, the number of possible alterna-
tives in combination with their probability of occurrence). He
proposed a model of average choice response latency that was a
product of a rate parameter and the amount of information pro-
cessing required:

L=alog, (N+ 1), (1)

where L is the average response latency, a is a rate parameter, and
N is the number of possible response alternatives. A number of
researchers have explored variations on this theme (Luce, 1986,
chap. 10).

Rate-by-amount models have also been proposed for solution
times to individual items on tests of ability in the psychometric
literature (e.g., Frearson, Eysenck, & Barrett, 1990; Furneaux,
1961; Rasch, 1980). More recently, multiplicative rate—amount
models have proven quite successful in explaining average re-
sponse latencies in specific tasks, such as mental rotation (e.g.,
Cooper & Shepard, 1973; Shepard & Metzler, 1971), short-term
memory scanning (e.g., Sternberg, 1975), and visual search (e.g.,
Atkinson, Holmgren, & Juola, 1969). Within certain limits, re-
sponse latencies generated by each of these paradigms can be
described nicely by a rate parameter attributed to an individual and
an amount parameter (e.g., degrees of mental rotation and number
of items to be searched) attributed to each experimental condition.
Many recent connectionist models that attempt to fit response
latency data make similar rate-by-amount assumptions. Here, in-
formation is typically processed in cycles in neural-like units, with
more difficult conditions taking more cycles (e.g., Cohen, Dunbar,
& McClelland, 1990; Kawamoto, 1993). Because rate of cycles
multiplied by time to complete the task will equal the number of
cycles necessary to complete the task, predicted response latencies
can then be derived from the ratio of the number of cycles and
cycles per second.

Random-walk models are another important class of response
latency models that are generally consistent with a rate—amount
framework (e.g., Luce, 1986, chap. 8). In general, random-walk
models predict that responses will occur when information accu-
mulates beyond some threshold and that the accumuiation of
information over time can be modeled as a random-walk process.
Random-walk models assume separate rate and amount parameters
(e.g., Luce, 1986, chap. 8; Nosofsky & Palmeri, 1997; Ratcliff,
1978, 1988; Townsend & Ashby, 1983) and are therefore consis-
tent with a latent variable rate—amount framework.
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Large- and Small-Scale Structure in Response Latency

The models discussed above all use the ratio of information-
processing amount over rate of processing to predict response
latencies generated under specific experimental conditions. Thus,
there is a general multiplicative principle that runs through all of
the rate-by-amount models listed above (and many others not
cited) that could potentially be used to better understand the
large-scale structure of response latency data and as a basis for
correcting for group and individual differences in overall response
latency. This general rate-by-amount principle describes the rela-
tionship between time and the ratio of amount of processing
performed over the rate of processing. Our rate—amount model is
based on the following assumptions: (a) that individuals possess a
characteristic base rate of information processing (i.e., a cognitive
speed) and (b) that experimental conditions require a certain
amount of information to be processed (i.e., they have a difficulty)
before the average individual can reliably choose and initiate a
correct response.

Of course, we are not claiming that information-processing rate
or amount will not vary systematically with variation of individual,
task, experimental condition, and temporal or psychological con-
text. It is our view, however, that individual differences in overall
information-processing rate will interact multiplicatively with the
difficulty level of an experimental condition to produce a system-
atic large-scale structure to response latencies across a wide range
(approximately 200 ms to 2,000 ms for the typical undergraduate)
of the response latency scale. By contrast, minor fluctuations in
information-processing rate and amount due to either manipulation
of experimental variables or transient fluctuations in psychological
state will tend to produce smaller scale deviations from the overall
pattern produced by individual differences.

Individual Differences in Cognitive Speed: Factor
Analytic Evidence

Although there is an extensive literature identifying elementary
cognitive operations in groups of younger adults within the chro-
nometric information-processing tradition (Posner, 1978), the lit-

Table 2

erature regarding individual differences in elementary coguitive
operations is much more limited (see Kyllonen, 1993, for an
example of response latencies used in conjunction with more
traditional tests of mental abilities within an information-
processing framework). However, there is a growing body of work
examining the factor structure (using techniques of factor analysis)
of response latencies generated by cognitive tasks (e.g., Hunt,
Davidson, & Lansman, 1981; Levine, Preddy, & Thorndike, 1987;
Vernon, 1983; Vernon & Jensen, 1984; Vernon & Kantor, 1986;
Vernon, Nador, & Kantor, 1985).

As discussed above, the existence of a General Speed factor
extracted from a covariance matrix using factor analytic tech-
niques is consistent with the idea that individuals possess a global
information processing rate, or cognitive speed, that remains rel-
atively stable across variations in test conditions. Table 2 outlines
a subset of the evidence for a General Speed factor from a sample
of studies that have reported the factor structure of response
latencies. These studies differ somewhat in methodology, but all
used either principal-components or principal-factors analysis. Al-
though it is tempting to view the striking similarity among these
studies as evidence for a General Speed factor, the evidence for
such a factor is still preliminary. The studies listed in Table 2 did
not choose cognitive tasks to reflect the full range of speeded tasks
as they appear in the information-processing literature. Therefore,
the first principal component or factor is, at best, only an approx-
imation to a General Speed factor (Humphreys, 1989). Alterna-
tively, the first component or factor may be interpreted as a
circumscribed information-processing factor. For instance, Hunt et
al. (1981) used seven measures from tasks that all shared the
requirement of retrieval of semantic information from long-term
memory. They therefore interpreted the strong, single principal
component in their results as speed to access long-term memory.

Despite these limitations, it is still interesting to note in Table 2
that (a} mean response latencies are, typically, moderately to very
highly positively correlated with each other; (b) principal-
components or principal-factors analysis usually produces a single,
or at least a first, unrotated factor that accounts for two thirds to
three fourths of the overall variance in mean response latency; and

Mean and Standard Deviation of Product-Moment Correlations and Factor Loadings Among
Selected Studies of Response Latency on Cognitive Tasks

Loading®

SD  No. of factors® % variance® M  SD

Study No. of tasks® M
Hunt et al. (1981)° 4 71
Vernon (1983) 6 .59
Vernon & Jensen (1984) 6 .59
Vernon et al. (1985) 8 .68
Vernon & Kantor (1986) 8 73
Levine et al. (1987)° 6 .56
Kranzler & Jensen (1991)° 6 61
Gernsbacher & Faust (1991) 3 72

13 1 75 .86 08
18 1 66 11 16
18 1 66 a7 17
13 1 71 .83 08
.10 1 76 85 07
A1 1 64 .80 06
.08 1 68 .82 03
.09 2 74 .86 03

2 Number of distinct tasks included; some tasks included more than one condition.
components or factors with eigenvalues greater than 1.
9 Mean and standard deviation of loadings for first unrotated factor or

¢ Factor structure computed by Mark E. Faust using principal-components analysis of published

first unrotated factor or component.
component.
product—-moment correlations.

P Number of principal
¢ Percentage of variance in data accounted for by the
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(c) individual tasks or conditions in these studies load uniformly
and highly on the first factor. In fact, Jensen (1988) stated that “in
several multivariate studies [of response latency]. . .that I have
seen, however, one feature is quite clear: There is always a large
General Speed factor along with other relatively smaller factors
associated with particular processes” (p. 120).

Several studies have reported correlations between measures of
speed of information processing and psychometric tests of intel-
lectual ability. These results are consistent with 2 General Speed
factor that plays an important part in efficient information process-
ing (e.g., Jensen, 1993; Kranzler & Jensen, 1991; Levine et al,,
1987; Vernon, 1983; Vernon & Jensen, 1984; Vernon & Kantor,
1986; Vernon, Nador, & Kantor, 1985). Measures of reaction time
in cognitive tasks have been found to be correlated with the g
factor common to traditional psychometric tests of intellectual
ability. When the variability common to g and response latency is
partialed out, the correlation between response latency and scores
on psychometric tests approaches zero (Jensen, 1993).

Several studies have found the General Speed factor common to
information-processing tasks to be significantly heritable (Baker,
Vernon, & Ho, 1991; McGue, Bouchard, Lykken, & Feuer, 1984;
Vernon, 1989). McGue et al. tested monozygotic (MZ) and dizy-
gotic (DZ) twins on several cognitive tasks and found that al-
though speed of processing on individual tasks was not signifi-
cantly heritable, overall speed of response across all the tasks was
heritable at .456. Vernon obtained 11 response latency measures
from eight tasks from 50 MZ and 52 DZ twin pairs and found that
heritabilities for individual tasks ranged from .24 to .30. Within
each group, correlations were submitted to a principal-factors
analysis, which yielded only one factor with an eigenvalue greater
than 1, accounting for 83% and 69% of the variance for the MZ
and DZ groups, respectively. All variables loaded highly (.67 to
.96) on these General Speed factors, which yielded a heritability of
.49. Thus, in both the McGue et al. study and the Vernon study,
roughly half of the variability in response latency can be attributed
to genetic factors.

The evidence included in the brief review above supports the
notion of a General Speed factor that (a) encompasses a range of
information-processing tasks and conditions, (b) is related to in-
dividual differences in the outcome of information processing (i.e.,
is related to measures of intellectual ability), and (c) may be at
least partially biologically determined (potentially through the
efficiency of connections in neural networks). We now move to an
examination of studies in the cognitive literature, using analyses
based on scatter plots of response latencies from an individual as
a function of response latencies of a reference group for the same
experimental conditions (i.e., Brinley plots).

Individual Differences in Cognitive Speed: Individual
Brinley Plot Evidence

In addition to the support for a relatively stable characteristic of
cognitive speed provided by the factor analytic studies discussed
above, the analysis of Brinley plots adds further support to the
notion of cognitive speed (e.g., Balota & Ferraro, 1992; Charness
& Campbell, 1988; Hale & Jansen, 1994; Maylor & Rabbitt, 1994;
Salthouse, 1993). Hale and Jansen tested undergraduates on a
battery of cognitive tasks. They found that condition means for
each individual were a linear function of the condition means for

all individuals. Similar results, originally reported in a slightly
different form by Balota and Ferraro, are presented in Figures 3A
and 3B.

Here, the fastest and slowest individuals’ mean response laten-
cies are plotted against the condition means for an average group
(younger and older adults are plotted separately) drawn from the
middle 50% of the distributions of overall speed. As can be seen,
the performance of the fastest and slowest individuals in each
group is described nicely by a linear function of the average
group’s condition means. The slope of the best fitting finear
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Figure 3. Scatter plots of condition means for the fastest and slowest
individuals in a group as a function of the group means for the middle 50%
of the rest of the individuals in that group. Panel A: Younger adults. Panel
B: Older adults. F = fastest; A = average; S = slowest. Data are from
“What Is Unique About Age in Age-Related General Slowing?” by D. A.
Balota and F. R. Ferraro, 1992. Reprinted with permission.



INFORMATION-PROCESSING RATE AND AMOUNT 783

function for the fastest individuals is less than unity, indicating
proportionately faster speed of information processing than in the
average individual. Similarly, the slope for the slowest individuals
is greater than unity, indicating proportionately slower information
processing than in the average individual. The results of Balota and
Ferraro (1992; depicted in Figures 3A and 3B) were similar to
those of Hale and Jansen (1994) and used a completely different
set of cognitive tasks. Furthermore, support for a General Cogni-
tive Speed factor was found for both younger and older adults by
Balota and Ferraro.

The results depicted in Figures 3A and 3B (Balota & Ferraro,
1992), as well as those reported by Hale and Jansen (1994), are
important because they provide stronger constraints with regard to
individual differences in information-processing rate and amount
than do factor analytic studies. For the slope of the Brinley
function to remain constant across the range of response latencies,
the individual must process information at a relatively similar
average rate across tasks (Hale & Jansen, 1994). Factor analytic
methods yielding results consistent with a General Speed factor are
based on covariances, which guarantees only that an individual’s
standing relative to other individuals remains constant across con-
ditions. Thus, the analysis of individual Brinley plots (e.g., Hale &
Jansen, 1994) adds support to the notion of a characteristic cog-
nitive speed that remains relatively stable within an individual
across a range of tasks.

Processing Amount

We now turn to a consideration of the general information-
processing requirements that are shared by most tasks typically
used to probe elementary cognitive operations. These tasks are
typically performed quickly and accurately by young adults. Thus,
we can assume that, with few exceptions, responses are made as a
consequence of the correct response becoming available to the
participant (rather than guessing). Information-processing models
that predict distributions of individual response latencies assume a
wide range of details of information processing (e.g., Luce, 1986;
McClelland, 1979; Ratcliff, 1988). Many of these models assume
two very general principles: (a) that information regarding the
appropriate response accumulates over time and (b) that once some
sufficiency criteria are met, a response is generated.

The rate—amount model of response latencies is not based di-
rectly on the accumulation of information (sometimes called acti-
vation) for a particular response; rather, it is based on the idea that
a certain amount of information processing must be performed to
produce the information necessary to reliably choose and initiate a
response. Here, we can use the terms difficulty and amount of
information processing interchangeably because we assume that
nearly all items would have been responded to correctly had there
been no emphasis on having individuals perform the task in
question quickly. Thus, items or tasks that require more processing
on the part of the average individual will be referred to as more
difficult, even though error rates might be similar.

The Muitiplicative Rate—Amount Model of Average
Response Latency

Consider a general view of events occurring within an individ-
ual following stimulus presentation. Following presentation of the

stimulus, information regarding possible response outputs accrues
over time as a result of cognitive processing until response criteria
are met. We assume that each individual possesses a characteristic
information-processing rate that is relatively constant over the time
period in which measurements are made but may vary somewhat
over longer time periods because of fluctuations in alertness,
arousal, or motivation. Further, we assume that each item requires
a certain amount of information processing before the average
participant can reliably select and initiate a response, Of course,
individuals differ in terms of the amount of cognitive processing
performed to solve a problem, with some individuals performing
more cognifive processing, on average, than the average person
and others performing less cognitive processing, on average, than
the average person to reliably perform a given task. Finally, once
enough cognitive processing is performed to meet the response
criteria, a response is then executed.

The Structural Model

Equation 2 incorporates the assumptions discussed above into a
psychometric model:

+ 6+ w, §
E[L,] = fL—T’— = ;’ + K, (2)

The subscript i refers to the ith individual, and the subscript j refers
to the jth experimental condition. The expected value of the re-
sponse latency (L) for the ith individual in the jth condition equals
the ratio of the sum of the amount of information processing
required (ie., o + 8, + w) divided by the cognitive speed of the
ith individual (7;). Here the amount of information processing
performed by a particular individual in a particular condition is
expressed as the sum of the overall average amount of processing
performed by the average individual across all experimental con-
ditions (w), the deviation from the average processing amount due
to condition (§)), and the deviation from the average processing
amount due to individual (w,). Thus, the rate—amount model pre-
dicts response latencies on the basis of each individual’s charac-
teristic cognitive speed (7;), each individual’s tendency to process
either more or less information relative to others being tested (w)),
and the difficulty of each condition expressed as a deviation (3)
from the overall information-processing amount (w).

The rate—amount model can be expressed as the sum of two

“additive time constants (see right side of Equation 2). The first

(i.e., 8/7,) represents the multiplicative change in response latency
as individual is held constant and task/condition difficuity is var-
ied. The second time constant presented in the right side of
Equation 2 (ie., k; = [w; + p)/1,) reflects variability in response
latency that is due to individuals only, being based on the sum of
a constant amount of information processing common to all indi-
viduals and tasks/conditions (i.e., i) and the differential amount of
information processing performed by an individual divided by the
rate of information processing of that individual.

It is common to assume that response latencies are composed of
a time component that varies with task demands and a second time
component that does not vary with task demands (e.g., Cerella,
1985; Luce, 1986, chap. 3). However, the second time component
is usually conceptualized as an input—output time component that -
remains relatively constant within an individual or group of indi-
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viduals across a range of task demands (e.g., Nosofsky & Palmeri,
1997). The rate-amount model (see Equation 2) defines processing
amount and cognitive speed in terms of the whole time interval
between stimulus presentation and response. The time constant (k)
is therefore based on all information processing, both central and
peripheral, occurring between stimulus and response that is com-
mon to all experimental conditions for a particular individual. One
way to obtain separate estimates of central and peripheral process-
ing parameters would be to explicitly model two additive stages.

Modeling information processing in serially ordered steps adds
a level of complexity we have expressly avoided. For example, if
we were to modify the rate-amount mode! of Equation 2 such that
there were two different stages of processing, each with a different
rate and amount of processing for an individual, then a simple
change in the amount of information processed during one of the
stages would not only decrease the overall amount of cognitive
processing performed, but it would also change the overall average
rate. Recently, Fisher and Glaser (1996) provided a framework for
analyzing group differences in response latency under conditions
in which a well-defined serial model for a particular experimental
task can be specified. Although this approach certainly has its
merits, one major drawback is that it relies on relatively strong
theoretical assumptions that we feel many researchers will find
premature, given our relatively weak knowledge of many of the
tasks used in cognitive research. We therefore have chosen to use
rate and amount parameters that are based on a few broad assump-
tions regarding how people process information and are not easily
broken down into serial stages but instead are designed to describe
the overall rate and amount of processing from stimulus presen-
tation through response. Thus, our rate—amount model, as outlined
in Equation 2, is best interpreted in terms of cognitive speed (7,)
and processing amount (. + §; + ;) and not in terms of central
versus peripheral processing.

Predictions of the Rate-Amount Model

Before fitting the rate-amount model to actual data, we first
discuss the structure that the model imposes on the expected value
of response latencies as a function of individuals and of experi-
mental conditions. These predictions are presented in detail in
Appendix A and are derived directly from Equation 2 using the
definition of the mean and standard deviation; simple algebra; and,
in some cases, linear regression.

The rate—amount model can be seen to impose a general linear
structure on the expected values of response latencies in the sense
that five general linear relationships are predicted in the overall
structure of the response latencies. The coefficients for this general
linear structure are admittedly complex (see Appendix A), but they
are linear nonetheless.

Consider the case in which average response latencies for a
number of experimental conditions have been gathered from a
number of individuals in which all individuals participate in all
conditions (i.e., repeated measures). To facilitate discussion of the
five linear predictions of the rate—amount model, we depict each
prediction graphically in Figures 4-7 in terms of its fit to the data
of Hale, Myerson, Faust, and Fristoe (1995). More details regard-
ing the Hale et al. study are provided in the next section.

Prediction 1: The individual Brinley function. The rate—
amount model predicts that the Brinley plot of the condition means

for a particular individual as a function of the overall group means
for the same conditions will be linear (see Equation A2, Figure 4).

Prediction 2: Group Brinley functions. The rate-amount
model predicts that the Brinley plot of the condition means for a
particular group as a function of the condition means for another
group will be linear (see Equation A3, Figure 5).

Both the rate—amount model and the multilayer slowing model
proposed by Cerella (1985, 1990) predict a generally linear Brinley
function. However, Cerella’s multilayer slowing model is based on
the assumption that the additive component reflects the amount of
peripheral input-output information processing performed by an
individual (see discussion of Equation 2 above), which is different
from the assumptions underlying the additive component of the
rate-amount model (x, in Equation 2). Thus, although the two
models predict a Brinley function with a similar form, the inter-
pretation of the intercept term in the Brinley function differs across
the rate~amount and multilayer slowing models.

Prediction 3: Latencies from a condition. For a given experi-
mental condition (i.e., holding the subscript j constant), the mean
response latency for each individual is predicted to be linearly related
to each individual’s overall mean (see Equation A5, Figure 6).

Prediction 4: Individual standard deviations and overall means.
For each individual, the standard deviation across experimental
conditions is predicted to be linearly related to that individual’s
overall mean (see Equation A7, Figure 7).

Prediction 5: Condition standard deviations and group means.
For each experimental condition, the standard deviation across
individuals is predicted to be linearly related to that condition’s
overall mean (see Equation A9, Figure 7).

Studies within the chronometric tradition have found a consis-
tent relationship between the variability of condition means within
an experimental condition (i.e., between-subjects diversity) and the
overall group mean for that condition (e.g., Chapman, Chapman,
Curran, & Miller, 1994; Maris, 1993a). Hale, Myerson, Smith, and
Poon (1988) undertook a meta-analysis and also found that group
means and between-subjects diversity for experimental conditions
were linearly related (/* = .87 and .86 for vocal and manual
responses, respectively). Young and old adults’ diversity fell on
the same regression lines, and more importantly, a partial corre-
lation analysis indicated that changes in between-subjects diversity
was attributable to speed, independent of age.

The Fit of the Rate—-Amount Model to Data From Hale
et al.’s (1995) Study

To evaluate the fit of the rate—amount model to observed re-
sponse latencies, we obtained the mean latencies of each of 19
younger adults and 19 older adults for each of 22 experimental
conditions (seven distinct nonverbal tasks: line-length discrimina-
tion, same~different choice, letter classification, shape classifica-
tion, mental rotation, visual search, and abstract matching) previ-
ously published by Hale et al. (1995). These data provide a good
test of the model because of the relatively wide range of overall
average response latencies produced by the participants and the
relatively broad range of task difficulties (condition means ranged
from 475 ms to 1,657 ms for the younger adults). We then fitted
the rate-amount model (see Equation 2) to the data from Hale et
al.’s study using gamma linear model analysis (GALIMA; Maris,
1993a, 1993b).
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Figure 4. -Scatter plots of condition means for four individuals as a
function of the overall mean across all individuals for the same condi-
tions (see Prediction | in text). Ind. = individual; Int = intercept; Y =
young; O = old. Data are from “Converging Evidence for Domain-
Specific Slowing From Multiple Noniexical Tasks and Multiple Ana-
Iytic Methods,” by S. Hale, J. Myerson, M. E. Faust, and N. Fristoe,
1995, Journal of Gerontology: Psychological Sciences, 508, pp. 202~
211. Copyright 1995 by the Gerontological Society of America. Re-
printed with permission.
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Figure 5. Scatter plot of older adult mean latency as a function of
younger adult mean latency from the same experimental conditions (see
Prediction 2 in text). Int. = intercept. Data are from “Converging Evidence
for Domain-Specific Slowing From Multiple Nonlexical Tasks and Mul-
tiple Analytic Methods,” by S. Hale, J. Myerson, M. E. Faust, and N.
Fristoe, 1993, Journal of Gerontology: Psychological Sciences, 508, pp.
202-211. Copyright 1995 by the Gerontological Society of America.
Reprinted with permission.

GALIMA allows for fitting models in which the structure of the
expected values of the dependent variable are fundamentally mul-
tiplicative in nature, as is the rate—amount model of Equation 2.
The GALIMA procedure has the advantage of using maximum
likelihood estimation techniques to jointly estimate parameters for
each individual and experimental condition simultaneously. Be-
cause the structure of the parameters in the rate-amount model
(see Equation 2 and Appendix A) is one of a large set of possible
multiplicative models the GALIMA procedure can fit, and because
it is the only procedure we are aware of that is designed to provide
simultaneous joint estimates of all of the parameters in such
multiplicative models, the GALIMA procedure provides a good
starting point for evaluating the overall fit of the rate—amount
model to the data. However, GALIMA is based on the assumption
that the dependent variable is distributed roughly as a generalized
gamma distribution, which seems to be a good rough approxima-
tion for response latency for individual responses (e.g., Luce,
1986; Maris, 1993a). This assumption is somewhat violated by the
fact that the central limit theorem dictates that mean latencies are
better approximated by a normal distribution. On the other hand,
GALIMA seems to be fairly robust to deviations from the assump-
tion of a generalized gamma distribution (Maris, 1993a) and under
some conditions the generalized gamma distribution can appear
somewhat bell shaped.

We therefore chose to include overall measures of goodness of fit
from the GALIMA fitting procedure and specific linear predictions
based on the GALIMA parameter estimates (see Figures 4-7). We
include model predictions only to demonstrate the closeness of the
linear equations developed in Appendix A to actual data for an actual
set of parameter estimates. We do not mean to suggest that the
rate—amount model is necessarily synonymous with GALIMA. In
fact, we anticipate that under typical conditions, researchers wishing
to evaluate the consistency of the rate~amount model with observed
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visual research; MAT = abstract matching; LTR = letter classification.
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Gerontology: Psychological Sciences, 50B, pp. 202-211. Copyright
1995 by the Gerontological Society of America. Reprinted with per-
mission.
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Figure 7. Scatter plots of standard deviations of mean response latencies
as a function of overall means. Panel A: Standard deviation across condi-
tions for an individual and overall mean for that individual. Panel B:
Standard deviation across individuals for a particular experimental condi-
tion and overall mean (across individuals) for that same condition (see
Predictions 4 and 5 in text). Int. = intercept. Data are from “Converging
Evidence for Domain-Specific Slowing From Multiple Nonlexical Tasks
and Multiple Analytic Methods,” by S. Hale, J. Myerson, M. E. Faust, and
N. Fristoe, 1995, Journal of Gerontology: Psychological Sciences, 50B, pp.
202-211. Copyright 1995 by the Gerontological Society of America.
Reprinted with permission.

data will examine scatter plots similar to those presented in Figures
4-7 to determine if these scatter plots are well fit by linear functions.

The GALIMA yielded an R” statistic (i.e., a pseudo-R* sta-
tistic that assessed the closeness of the model to the observa-
tions relative to the closeness of a single parameter model to the
observations) of .933. Even though the R? statistic indicates an
overall high level of fit with the data, it is still informative to
examine graphically (see Figures 4-7) how well the five struc-
tural predictions of the rate—amount model fit these data. Fig-
ures 4-7 clearly demonstrate that the specific linear relation-
ships predicted by the rate-amount model provide acceptable
qualitative fits for the data from Hale et al.’s (1995) study. As
indicated by the R? statistic, nearly all of the variability in
response latencies across the relatively wide range of tasks used
by Hale et al. can be explained by three factors: (a) the diffi-
culty of the experimental condition, (b) the cognitive speed of
the individual, and (c¢) the processing-amount parameter of the
individual.
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Global Processing Parameters Versus Cognitive
Components

Although most research in the chronometric tradition (e.g.,
Posner, 1978; Sternberg, 1969) has focused on identifying and
isolating component cognitive operations, an increasing number of
researchers have begun to examine group differences in global
aspects of processing, such as overall speed (e.g., Cerella & Hale,
1994; Ferraro, 1996; Hale et al., 1993; Jensen, 1988; Kail &
Salthouse, 1994; Maylor et al., 1992; Mayr & Kliegl, 1993; My-
erson & Hale, 1993; Myerson et al, 1990; Nebes, Brady, &
Reynolds, 1992; Nebes & Madden, 1988; Pate & Margolin, 1994,
Salthouse, 1992). By providing global processing parameters for
individual differences in information-processing rate and amount,
the rate—amount model (as fit by GALIMA; Maris, 1993a, 1993b)
holds the promise for new research into group differences in global
aspects of processing. For example, in the domain of cognitive
aging, does the cognitive speed of faster younger adults change
more or less with age than the cognitive speed for slower younger
adults? Are there systematic age-related differences in the amount
of cognitive processing performed to solve a range of tasks?

The overarching goal of our analysis of response latencies is to
separate global information-processing factors—which influence the
large-scale structure of response latencies (on the order of 100s of
milliseconds) across a wide range of individuals and conditions—
from task-specific factors, which influence the small-scale structure of
response latencies (on the order of 10s of milliseconds; e.g., semantic
priming). An interesting question arises with regard to the factors that
might cause the group differences in the global processing parameters
of cognitive speed and processing amount to vary.

Evidence is accumulating indicating that group differences in
cognitive speed may vary between broad domains. For example,
the relationship between older adult latencies and younger adult
latencies has been shown to differ within broad classes of process-
ing, such as lexical versus nonlexical tasks (e.g., Hale et al., 1991;
Lima et al., 1991), or with differential involvement of working
memory (e.g., Mayr & Kliegl, 1993). These results suggest that
group differences in global processing parameters should be of
increasing interest to those researchers attempting to understand
broad patterns of group differences in information processing. This
can be accomplished by constructing Brinley functions for each
task or experiment and testing them statistically.

Various strategies for detecting task-specific cognitive speed
factors have been proposed (e.g., Cerella, 1991; Fisk et al., 1992;
Myerson, Wagstaff, & Hale, 1994; Salthouse, 1992); however,
these methods all lack provisions for repeated measures, which is
the predominant design used in the chronometric literature. In
addition to being inappropriate for repeated measures data, many
of these methods for detecting task-specific cognitive speed factors
suffer from reduced power because the number of experimental
conditions, rather than the number of participants, acts as the
degrees of freedom for the inference test in question. Because the
number of participants is typically much larger than the number of
experimental conditions in chronometric studies, an increase in
power should generally result from use of a test that has degrees of
freedom based on the number of participants.

To take repeated measures into account in testing the data from
Hale et al.’s (1995) study for task-specific differences in cognitive
speed, we used a test proposed by Faust, Balota, and Ferraro (1994;

see also Hale et al., 1995), based on an approach suggested by Lorch
and Myers (1990) and by Balota and Chumbley (1984), which uses
the participant as its base unit of analysis. For each older adult in the
Hale et al. study, we regressed mean response latencies for each task
on the younger adult condition means for that same task (ie., a
task-specific individual Brinley function). From this analysis, we
obtained estimates of the relative cognitive speed (i.e., the slope of the
various functions) for each older adult for each task. The variability in
older adults’ slopes and intercepts were then used as the basis for
repeated measures analysis of variance (ANOVA) tests for task-
specific differences in cognitive speed and processing amount across
the tasks. There were no significant task differences in either slopes,
F(4,72) = 1.32, p = .270, or intercepts, F(4, 72) = 1.24, p = .303,
for the five task-specific Brinley functions tested (two of the tasks had
only two conditions each and were not tested). This result is further
consistent with the hypothesis that a single cognitive speed factor can
explain the large-scale structure of the results from the Hale et al.
study.

Although analysis of response latencies within the framework
suggested by the rate—amount model will allow researchers to ask
questions regarding global processing parameters, it has tradition-
ally been the case that psychologists taking an information-
processing perspective are more typically interested in small-scale
effects in response latency indicative of fundamental cognitive
operations. For this reason, a major goal of the present analysis
was to present methods for controlling the variability in response
latencies attributable to global processing parameters. This would
allow for a person-by-person rescaling of response latencies so that
group differences in small-scale effect sizes (i.e., presumably
reflecting group differences in fundamental cognitive operations)
would not be confounded by group differences in overall response
latency. As discussed later, the rate—amount model may act as a
guide for a linear rescaling of each individual’s response latencies
to a common scale that will allow for more reliable identification
of group differences in component cognitive operations.

Transforming Response Latencies to a Common Scale

Two basic approaches for transforming response latencies using
the rate—amount mode! (see Equation 2) are presented below. First,
we might use some sort of estimation technique, such as GALIMA
(see preceding discussion of fit of rate—amount model to data) or
linear regression, to generate parameter estimates that can be then
used as the basis for a transformation. Alternatively, we might use
sample statistics, such as the mean and standard deviation, which
might then be combined with raw response latencies (e.g., dividing
by each individual’s mean to produce a proportion) to form trans-
formed observations. Both approaches can be equally useful, and
both approaches share the common requirement that observed data
must be rescaled linearly across individuals.

Recall that the rate—amount model predicts that each individu-
al’s response latencies will be a linear function of, and thus a linear
transformation away from, the average group response. The over-
arching goal, then, is to perform a linear transformation of each
individual’s latencies to reach some common scale. Assuming one
has access to unbiased estimates of the parameters of the rate—
amount model (see Equation 2), rescaling can be accomplished by
some combination of multiplication and subtraction using the
cognitive speed and processing-amount parameters.
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GALIMA Parameter Transformation

Because GALIMA allows for joint estimation of person and
condition parameters from a given set of data, it should be possible
to use GALIMA parameter estimates of the fit of the rate—amount
model to transform latencies. Assuming that parameter estimates
(e.g., ¢, ., and k,) are unbiased independent estimates of rate—
amount model parameters (e.g., 7; [cognitive speed] and k,, where
k; = w/7; [individual time constant, independent of condition}), it
is possible to determine the expected value of the GALIMA-based
transformation (where 7,* = 7,7 1):

E[Gj1= E[ (L; — &) 75 + E} =§T*+k, 3)

where L;; is the observed mean latency for the ith individual in the
Jjth condition and the parameters ¢; and k; are GALIMA estimates
of the rate—amount (see Equation 2) parameters for the ith indi-
vidual. The result is a transformation that is linear for each indi-
vidual (i.e., holding i constant) and yields an expected value that
includes condition difficulty (3,) divided by an average (constant)
speed parameter plus an additive constant. The GALIMA trans-
formation is therefore expected to produce latencies scaled to
conform to those of a participant with average rate and amount
parameters (i.e., k and 7*).

Regression Transformation

Because GALIMA is not currently available in any major sta-
tistical package, and because the analysis program currently avail-
able (Maris, 1993a, 1993b) to perform GALIMA is somewhat
limited in the number of individuals and conditions that can be
analyzed at once, it seems prudent to consider a transformation
based on parameter estimates that can be easily obtained using
standard regression techniques, if possible. As demonstrated in
Equation A2, the rate—amount model predicts that condition means
for an individual will be linearly related to the overall means for
each condition. We can therefore use simple linear regression of
the overall means on each individual’s latencies to derive slope
and intercept parameters that indicate the individual’s information-
processing rate and amount relative to the “average” individual.
Equation 4 presents the expected value of the transformation based
on parameter estimates from simple regression:

E[R,;] = E[L; by + by] = 87.% + i, @)

where E[R,] is the expected value of the transformation and b, and
b, are the simple regression parameters generated by regressing
the overall condition means on the condition means for each
individual. Of course, Equation 4 assumes that unbiased and
consistent estimates of the slope and intercept parameters in Equa-
tion A2 can be obtained by simple regression. The regression
transformation of Equation 4 has one advantage over the GALIMA
transformation of Equation 3: The resultant overall means for each
individual will all equal each other and simultaneously all be equal
to the overall mean across individuals and conditions in the orig-
inal untransformed latencies. The GALIMA transformation does
not guarantee strict equality in this regard because of the maximum
likelihood estimation technique used.

It is worth noting that Madden (e.g., Madden et al., 1992, 1993)
has suggested a similar transformation that does not take individ-
ual differences into account and is applied to only one of two
groups being compared. The regression transformation of Equa-
tion 4 can be seen as a generalization and extension of Madden’s
approach, with added theoretical motivation provided by the rate—
amount model.

The regression transformation has the advantages of being sim-
ple (i.e., it simply requires multiplying the slope and adding the
intercept parameters from the linear regression of an individual on
everyone else) and generally available because of the widespread
use of linear regression in behavioral science. The major potential
weakness of both the regression and the GALIMA transformations
is that they rely on estimation techniques, which in turn rely on
multiple constraints in the data to yield parameter estimates. The
parameter estimates for both the regression and GALIMA trans-
formation will, of course, be sensitive to restriction of range in
conditions. Moreover, the GALIMA transformation will also be
sensitive to restriction of range in terms of the cognitive speed of
individuals because it simultanecusly estimates person and condi-
tion parameters. Therefore, although use of the regression trans-
formation has much to recommend it, we do suggest that research-
ers wishing to use this technique consider designs in which
participants are tested across a range of experimental conditions to
ensure enough data for reliable estimation of regression
parameters.

We now turn to two transformations, the z-score and proportion
transformations, that do not use estimation methods. These trans-
formations use the sample mean and standard deviation for each
individual as a basis for transformation of that individual’s re-
sponse latencies.

Z-Score Transformation

The z-score transformation has been recently proposed as a
method for controlling for a loss in power due to individual
differences in overall response latency (Bush, Hess, & Wolford,
1993). Bush et al. only recommended use of the z-score transfor-
mation to remove the influence of individual differences in overall
mean response latency within a single group. Nonetheless, as
discussed later, to the extent that the rate—amount model provides
a good fit to observed data, the z-score transformation will provide
a (somewhat biased) rescaling of the data. Equation 5 presents the
expected value of the z-score transformation obtained by taking
each individual’s condition means, subtracting their overall mean,
and dividing by the standard deviation of their condition means:

(5, 3)

E[Z;] = E[(Lij - Lz)/SLi] = m

+ C,. %)
The additive error term (C,;) appears because (a) the top and bottom
of the z-score ratio are not necessarily independent, (b) we are using
the reciprocal of the expected value to approximate the expected value
of the reciprocal, and (c) we are using Equation B10 to approximate
the sample standard deviation (see Appendix B).

Constant g, is a biasing error term (see Equation B10), which is
associated with the average intrinsic variability (i.e., variability

from response to response for an individual holding condition
constant) for an individual. The approximation in Equation 5
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reflects the fact that if there was no variability in repeated re-
sponses to the same stimuli (i.e., no intrinsic variability in indi-
vidual responses in a given testing condition; all o8 = 0 for all
L,s in Equation Al), then the z-score transformation would di-
rectly reflect the z-score scaling of condition difficulties. In other
words, in the absence of intrinsic variability, the only reason mean
response latencies would vary would be individual differences in
processing rate and condition differences in difficulty. Under such
conditions, the z-score transformation would be a standardized
scale of amount of information processing.

Unfortunately, the right side of Equation 5 includes an error
term (a; see Equation B10), which biases the z-score transforma-
tion as a function of the intrinsic variability of the latencies of
individual responses for a person performing in a given condition.
Furthermore, this bias term interacts multiplicatively with the
processing rate of the individual. Thus, to the extent that the
product of intrinsic variability and processing rate differs across
individuals, the z-score transformation will be differentially biased
for individuals. However, to the extent that different groups do not
differ in intrinsic variability, the z-score transformation will be
effective.

Figure 8 presents the results of the application of the z-score
transformation to the data from the Hale et al. (1995) study. Given
that the Brinley function that best fits the transformed data is very
close to the identity line, it appears that the z-score transformation
has effectively removed group differences in cognitive speed and
processing amount while avoiding problems due to differential
bias across groups. Under such conditions, the z-score transforma-
tion provides an easy-to-use and easy-to-interpret rescaling of
latencies to a standardized scale of information-processing
amount.
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Figure 8. Scatter plot of z-score-transformed latencies for older adults as
a function of z-score-transformed latencies for younger adults for the same
experimental conditions. Data are from “Converging Evidence for
Domain-Specific Slowing From Multiple Nonlexical Tasks and Multiple
Analytic Methods,” by S. Hale, J. Myerson, M. E. Faust, and N. Fristoe,
1995, Journal of Gerontology: Psychological Sciences, S0B, pp. 202-211.
Copyright 1995 by the Gerontological Society of America. Reprinted with
permission.

Although there are no immediately apparent group differences
in the global structure of the transformed data depicted in Figure 8,
there may still be group differences in small-scale structure. That
is, a repeated measures ANOV A may still reveal that some of the
deviations from the identity line in Figure 8 are due to systematic
group differences. Before applying such an analysis to the data of
Hale et al. (1995), we present one final transformation for com-
parative purposes.

Proportion Transformation

Several recent studies of cognitive aging have used a proportion
transformation of response latencies in which each condition mean
for an individual is divided by some measure of overall response
latency (see Chapman et al., 1994; Charness & Campbell, 1988;
Dulaney & Rogers, 1994; Hartley, 1993; and Spieler et al., 1996,
for recent examples). This is often justified by assuming that
individuals differ by being proportionately slower or faster than
each other. If such is the case, then dividing each individual’s
condition mean for a given experimental condition by their overall
mean should yield a value that remains constant across individuals.
That is, constant experimental effects should yield constant pro-
portions in response latencies across individuals.

Assuming that condition means for one individual are propor-
tional to the condition means for another is equivalent to assuming
that a Brinley plot of the condition means will be best fit by a line
that passes through the origin. As already noted, this is often not
the case (see Figure 4 and Table 1). Therefore, the assumptions
underlying ratio transformation will often be violated in real data.

Equation 6 presents the expected value of the proportion trans-
formation:

L; 8, + K,
ELPy) = E[f] TR ork O ©®

First, note that the additive error term (C,;) appears because the top
and bottom of the ratio in the middle term of Equation 6 (i.e., the
proportion transformation) are not necessarily independent and
because we used the reciprocal of the expected value to approxi-
mate the expected value of the reciprocal. Although the additive
error term (C;) will not be negative, its exact value also depends
on the sampling distributions of the specific variables measured
Gi.e., Lij).

Also, note that Equation 6 demonstrates that the proportion
transform will only yield an expected value that is the proportional
difficulty of each condition (i.e., what one might intuitively expect
the transformation to measure) when the additive constants (i.e., x;
and C;) in Equation 6 are zero. As can be seen in the right-hand
side of Equation 6, taking each individual’s mean latency in each
condition and dividing by that individual’s overall mean latency
has an expected value that is a biased measure of the proportional
difficulty of a particular condition. The bias is represented by two
additive constants (i.e., k; and C,;) and is due to problems associ-
ated with taking the expected value of a ratio and to individual
differences in the processing-amount parameter (k;). It can be
shown that when the average processing-amount parameters for
two groups are equal and the distributional assumptions for the two
groups are equivalent, the rate—amount model yields a Brinley
function that is approximately proportional (i.e., linear and goes



790 FAUST, BALOTA, SPIELER, AND FERRARO

through the origin). Under such limited conditions (see Mayr &
Kliegl, 1993, for an example), the proportion transformation will
provide an effective rescaling of latencies to a common scale.
However, if the Brinley function does not go through the origin for
real data, this is an indication that the proportion transformation is
most likely inappropriate.

Figure 9 presents the results of the application of the proportion
transformation to the data from the Hale et al. (1995) study. As can
be seen, the linear Brinley function that best fits the transformed
data deviates markedly from the identity line, indicating a poor
rescaling. This result was to be expected, given that the linear
Brinley function fit to the raw data (see Figure 5) does not go
through, or even near, the origin. Thus, the proportion transforma-
tion appears to be inappropriate for the data of Hale et al.

Finding Task-Specific Group Differences in the Presence
of Global Group Differences

Examination of Figure 5 might lead to the conclusion that it is

To demonstrate that it is possible to find small-scale group
differences in response latencies even in the presence of a strong
single general-slowing component, we reanalyzed the data from
the Hale et al. (1995) study using raw latencies, z-score-
transformed latencies, and regression-transformed latencies. We
then compared the ANOVA results of all three forms of the data
with regard to Group X Condition interactions in each of the seven
tasks included in the Hale et al. study. Table 3 displays this
comparison.

As can be seen, six of the seven tasks yielded a Group X
Condition interaction in the raw latencies, but this is to be ex-
pected, given the good fit to a linear group Brinley function with
a slope different from unity (see Figure 5). We therefore suspect
that most of these interactions may be spurious (i.e., due to linear
group differences in scaling of response latencies). Consideration
of the analyses of the regression- and z-score-transformed means
(see the middle and right columns of Table 3) bears this concern
out.

Here, we get a consistent picture of a significant Group X
Condition interaction for the letter classification task and a mar-

unlikely that any task-specific group differences might be found in
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variability in older adult condition means is accounted for by
younger adult condition means. The problem with such a conclu-
sion is that it neglects to take scale differences into account. The
Brinley plot depicted in Figure 5 displays the large-scale structure
of the data across the whole range of individuals and conditions.
However, if we imagine zooming in our view to examine just two
or three conditions at a time, then the deviations from the global
relation will be “blown” up. What we are attempting by transform-
ing all individuals to a common scale is a rescaling of the raw
deviations from a common linear Brinley function so that we can
appropriately use an ANOVA to evaluate these small-scale effects.
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Figure 9. Scatter plot of proportion-transformed latencies for older adults
as a function of proportion-transformed latencies for younger adults for the
same experimental conditions. Data are from “Converging Evidence for
Domain-Specific Slowing From Multiple Nonlexical Tasks and Muitiple
Analytic Methods,” by S. Hale, J. Myerson, M. E. Faust, and N. Fristoe,
1995, Journal of Gerontology: Psychological Sciences, 50B, pp. 202-211.
Copyright 1995 by the Gerontological Society of America. Reprinted with
permission.

results depicted in Table 3 provide evidence that removing large-
scale linear dependencies among individuals (by a linear transfor-
mation to a common scale) does not preclude finding small-scale
Group X Condition interactions. Here, we have identified
Group X Condition interactions in the letter classification task,
which may indicate group differences in some fundamental cog-
nitive operation associated with this task. Further detailed analysis,
and possibly further experimentation, is needed to determine the
specifics of how we should interpret this finding.

In essence, we have linearly rescaled the data from individuals
so that all individual Brinley functions (i.e., the plot of condition
means from an individual as a function of overall condition means)
fall on the identity line and then analyzed the residuals away from
these individual Brinley functions for systematic group differences
caused by manipulation of the independent variables. Thus, our
approach can be seen as hierarchical in that we have controlled for
global linear differences in response latency and we are concerned
with finding statistically significant variability on a smaller scale
in the rescaled residuals.

Transforming to a Common Scale Using Individual
Response Latencies

We began our discussion of individual differences in
information-processing rate and amount with the example of two
individuals performing a priming task with only two conditions. It
is not uncommon in the chronometric literature to have tasks in
which all individuals are tested in a control condition and an
experimental condition, with the resultant difference being thought
of as an amount (e.g., semantic priming; Myerson et al., 1992). We
have argued thus far that for this to be the case all individuals must
be measured on the same information-processing scale. We have
suggested that estimation techniques may be used to estimate the
rate—amount model parameters of cognitive speed and processing
amount and that when there is not enough data to obtain reliable
parameter estimates, the z-score transformation may be used. The
z-score transformation appears to be widely applicable because it
predicts a generally linear Brinley function. However, the z-score

- A
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Table 3

F Value for Interaction, Degrees of Freedom, and p Value for
Mean RTs From Hale et al.’s (1995) Study and for Regression-
and Z-Score-Transformed Means

Task Mean RT Regression score 7 score

Line-length discrimination

F 10.36 0.20 0.23

dfs 1,36 1,36 1, 36

p .003 .660 .635
Disjunctive choice RT

F 1.94 0.02 0.03

dfs 1, 36 1, 36 [, 36

p 173 .896 .858
Letter classification

F 7.28 4.54 441

dfs 2,72 2,72 2,72

p .001 .014 016
Shape classification

F 3.18 1.09 1.08

dfs 2,72 2,72 2,72

P 047 .343 344
Mental rotation

F 8.36 2.1 2.08

dfs 3, 108 3, 108 3, 108

p <.001 .098 107
Visual search

F 19.96 0.49 043

dfs 3, 108 3, 108 3, 108

p <.001 .693 734
Abstract matching

F 20.47 0.94 1.04

dfs 3, 108 3, 108 3, 108

p <.001 426 .376

Note. RT = reaction time.

transformation, as presented above (see Equation 5), involves
division by the standard deviation of condition means for each
individual. A problem arises in the extreme case of only two
experimental conditions in which the standard deviation of each
individual’s condition means and the difference between those
means are perfectly correlated. Thus, just as one cannot apply
linear regression to two points, one cannot apply the z-score
transformation of condition means to the case of only two exper-
imental conditions.

To solve this problem, we may simply extend the z-score trans-
formation to individual response latencies rather than to condition
means as before. The logic of this extension is straightforward.
Whereas before we had a difficulty parameter (i.e., 8;) for each
experimental condition, we now have a difficulty parameter (3;)
for each item, with the index j now indexing the jth item. One
potentially serious issue does appear, however, when one consid-
ers the notion that the difficulty (i.e., amount of cognitive process-
ing required) of an item will vary with the sequential context (e.g.,
what response was made to the preceding item, what was the
identity of the preceding item, or when was the preceding item
presented?). It has long been known that sequential effects greatly
influence response latencies (e.g., Morton, 1979; Rabbitt, 1966;
Soetens, Boer, & Hueting, 1985).

It is rare that individual items are presented to individual par-
ticipants in exactly the same order. Furthermore, whereas error
rates are typically low in the class of tasks we have attempted to

model, the pattern of errors across items will differ across partic-
ipants. Thus, sequential effects are typically confounded with
individuals. However, given that it is common to have a relatively
large number of trials (e.g., in the 200 to 300 range) and that trial
order is often randomized for each individual, sequential effects
are likely to average out in the long run. In the analysis that
follows, we assume that sequential effects average out for the most

part and that when they do not, they merely add random error.

Monte Carlo Simulations

We ran several Monte Carlo simulations to evaluate the perfor-
mance of analyses of raw and transformed latencies under condi-
tions of relatively small amounts of data. We were interested both
in relative power to detect within-subject effects and protection
against Type I errors with regard to Group X Condition interac-
tions. We set up a hypothetical experiment in which two groups of
hypothetical individuals (20 per group) were tested in each of two
experimental conditions (20 trials per condition). We randomly
selected response latencies from population distributions whose
means and standard deviations varied systematically in accordance
with the rate--amount model (see Equation 2), thereby modeling
individuals as if their response latencies were all linear transfor-
mations of each other.

Method. For each run of each simulation, a response latency distribu-
tion was generated for each individual and condition combination. Al-
though there is no agreement in the literature regarding the correct distri-
bution for response latencies (Luce, 1986), good empirical fits have been
consistently obtained using the ex-Gaussian distribution (e.g., Hockley,
1984; Ratcliff, 1978). Because we expected the results of the simulations
to be relatively stable across minor variations in positively skewed distri-
butions, we were not concerned with finding an optimal model of latency
distributions and settled on the ex-Gaussian distribution because of its
popularity in the literature and ease of implementation. Therefore, each
distribution was modeled as being ex-Gaussian with a modest (1.5) level of
positive skew.

The means and standard deviations of these distributions varied in
accordance with the rate—amount model. The parameters setting this large-
scale structure (i.e., condition difficulty and the rate and amount of pro-
cessing on the part of individuals) were drawn randomly for each simulated
experiment within constraints suggested by the actual parameters obtained
in our earlier GALIMA fit of the rate-amount model to data from Hale et
al.’s (1995) study. Thus, in effect, we simulated younger and older adults’
performance on a two-condition task of average difficulty based on the data
from the Hale et al. study.

For each run, 20 responses were drawn at random from each latency
distribution, proportion and z-score transformations were computed for
each simulated latency, and condition means were computed for each
individual using the raw and transformed latencies. These means were then
subjected to a dependent-group ¢ test to test for mean differences (i.e.,
within subject) in the experimental conditions; an independent-group 7 test
on difference scores to determine Group X Condition interactions; and in
the case of the raw means, an independent-group ¢ test of group differences
in overall means. All ¢ tests were performed with an alpha of .05.

Eight simulations were run, with 100,000 replications each. We varied
four aspects across simulations. First, we varied how much error variability
was included in the latency distributions. The rate-amount model hypoth-
esizes two sources of within-distribution variability of response latencies:
(a) variability due to the difficulty of the items presented and (b) error
variability. Within each simulation, we assumed a constant variance for
item difficulties for both conditions and a constant error variability across
all individuals and conditions. However, in half the simulations (low error)
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the error variability was one fourth as large as the item variability. For the
other half of the simulations (high error), we kept the same item vatiability
but increased the error variability to be of equal magnitude. Second, we
varied whether or not the groups differed in average cognitive speed
parameters. Third, we varied whether or not the groups differed in average
processing-amount parameters. Fourth, we varied the size of the condition
effect (i.c., the difference in condition difficulty), expressing it as a func-
tion of distribution standard deviation, as is customary (e.g., Bush et al.,
1993).

Results and discussion. Table 4 displays the results of four
simulations in which no group differences in either average cog-
nitive speed or processing-amount parameters were modeled. We
varied the amount of error variability (high or low) and the size of
the within-subject effect (i.e., either none or .10 SDs). The main
finding was that, as Bush et al. (1993) suggested, z-score-
transformed response latencies are likely to provide greater power
in detecting effects on repeated measures factors (i.e., within-
subject effects; see far-right column of Table 4). We have therefore
replicated and extended Bush et al. results by adding large-scale
structural constraints predicted by the rate—amount model, and
present in real data (e.g., Hale et al., 1995), to a Monte Carlo
simulation of power to detect within-subject effects.

Table 5 displays the results of four simulations in which we did
simulate a faster and a slower group, in terms of the average
cognitive speed parameter, as well as group differences in the
average processing-amount parameter. For these simulations, the
condition effect was set at .50 SDs. As shown in Table 4, under
conditions of no group differences in average processing-amount
parameters, the proportion and z-score transformation analyses
provided equivalent control over Type I errors (i.e., rejection of the
null hypothesis approximately 5% of the time) and provided mark-
edly more control over Type I errors than did analyses of raw
latencies. However, when group differences in average processing-
amount parameters (i.e., group differences in the average additive
time constant; see Equation 2) were included, the z-score transfor-
mation analyses performed far better than did either the raw
latency or proportion transformation analyses (see middle column
of right half of Table 5).

Table 4

Proportion of Null Hypothesis (« = .05} Rejections for Monte
Carlo Simulation of Two Groups (n = 20 Each,

20 Observations Per Condition) With Identical
Information-Processing Parameters

ES®* =0 ES® = .10

Within Within
Group Interaction subject Group Interaction subject

Error
variability®

High error
RT 051 .050 049 051 .050 182
Proportion  NA 050 .050 NA .051 793
z NA .050 .050 NA 051 .807
Low error
RT 050 051 .048 2050 050 .588
Proportion NA .051 049 NA .051 597
z NA 052 .048 NA 051 614

Note. ES = effect size; RT = reaction time; NA = not applicable.

2 The intrinsic response variability of a simulated individual. ® Difference
between means of condition distributions expressed in number of standard
deviations.

Conclusions: Monte Carlo simulations. The results of these
simulations clearly suggest that when there is not enough data to fit
the rate-amount model directly, traditional analyses of raw laten-
cies should, in general, be augmented by a follow-up analysis of
z-score-transformed latencies. Such an analysis should provide
greater power in detecting within-subject effects and provide
greater protection against acceptance of spurious Group X Con-
dition interactions.

It is worth noting, however, that the rate—amount model predicts
that the z-score transformation will result in unequally biased
rescaling when there are group differences in the relationship
between the condition means and condition standard deviations for
an individual. We therefore suggest further that the standard de-
viation of individual response latencies be regressed on condition
means and the resulting functions be compared across groups.
Group differences in these functions would indicate fundamental
differences in the relationship between cognitive speed and intrin-
sic variability across groups.

General Discussion

Studies using response latency to probe fundamental cognitive
processes often treat the measurements taken on different individ-
uals (or groups) as if they came from a physical scale with a
common unit of measurement. This is unlikely to be the case with
regard to underlying information processing if individuals (or
groups) differ in terms of cognitive speed and/or processing
amount. Our analysis of the results of Hale et al.’s (1995; see also
Balota & Ferraro, 1992; Hale & Jansen, 1994) study suggest a
large-scale structure for response latencies that simultaneously
provides multiple linear constraints (see Equations A2-A9).

A Hierarchical View

Of central interest is the fact that the latencies for various
individuals are linearly interrelated on a global scale (see Figure
4). Such linear interrelationships lead naturally to the prediction
that when groups differ in terms of overall mean response latency,
overadditive interactions (i.e., the slower group producing a reli-
ably greater effect than the faster group) are to be expected. Given
the increasing number of studies in the literature reporting groups
that are systematically slowed in relation to some reference group
(e.g., Cerella et al., 1980; Ferraro, 1996; Hale et al., 1991, 1993;
Kail, 1991, 1992; Maylor et al.,, 1992; Nebes & Brady, 1992), it is
of some concern that spurious Group X Condition interactions
may be finding their way into the literature (e.g., Salthouse, 1992).

We have taken the position that it is only those experiments that
provide evidence of small-scale deviations from this large-scale
norm that are truly of interest for identifying group differences in
specific cognitive processes (Burke et al., 1987; Kliegl & Mayr,
1992; Madden et al., 1993; Salthouse, 1992). However, our anal-
ysis also suggests that these small-scale deviations should be
rescaled on a person-by-person basis according to individual-based
global processing parameters.

Consideration of linear individual differences in response laten-
cies leads directly to the view that response latencies can be
modeled as the result of a certain amount of information process-
ing performed at a given average rate (i.e., cognitive speed). We
have proposed a rate-amount model, based on general
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Table 5

Proportion of Null Hypothesis (a = .05) Rejections for Monte
Carlo Simulation of Two Groups (n = 20 Each, 20
Observations Per Condition) With Different Information-
Processing Parameters (Slower and Faster Groups) and
Constant Effect Size (.50)

Additive constant Additive constant

differential® = differential® = 2
Error Within Within
variability®  Group Interaction subject Group Interaction subject
High error
RT 1.000 999 1.000  1.000 999 1.000
Proportion NA 051 1.000 NA 688 1.000
z NA .052 1.000  NA .053 1.000
Low error
RT 1.000 987 1.000  1.000 .987 1.000
Proportion  NA .049 1.000 NA 499 1.000
z NA 051 1.000  NA 051 1.000

Note. RT = reaction time; NA = not applicable.

“ The intrinsic response variability of a simulated individual. ® Group
difference in the additive time component (see Equation 2) expressed in
number of standard deviations.

information-processing principles, that is consistent with the large-
scale structure often found in response latencies and that can be
used as a basis for development of methods to linearly transform
individuals’ latencies to a common scale. The rate-amount model
also provides a basis for identification of global processing param-
eters that may help researchers to better understand global group
differences in information processing.

Individual and Group Differences in Response Latency

One important contribution of the present analysis is to draw the
attention of those researchers interested in group differences in
response latencies to the fact that the systematic group differences
in response latencies bear some resemblance to systematic differ-
ences found between individuals (see Balota & Ferraro, 1992, and
Hale & Jansen, 1994, for discussion of these issues within the
domain of cognitive aging). To say that one group is generally
cognitively slowed in relation to another presumes that each indi-
vidual has a general cognitive speed and that this cognitive speed
differs not only across individuals but also across groups. In our
view, it is the contrast between individual differences and group
differences in global processing parameters that will provide po-
tentially interesting questions for further research. For example,
are slower younger adults slowed, in terms of general cognitive
speed, by the same amount as faster younger adults as they age?

Transforming to a Common Scale

The analyses presented above use the rate—amount model as a
measurement model for mean response latencies and yield some
clear recommendations with regard to linearly transforming the
latencies of individuals to a common scale. First, if enough data
has been gathered from a wide enough range of individuals and
conditions, methods such as GALIMA or linear regression should
be used to obtain estimates of each individual’s global processing

parameters. These can then be used as the basis of a linear
transformation of raw latencies. Although it is beyond the scope of
this article to provide a Monte Carlo-type simulation of the gen-
eral performance of such transformations, both the GALIMA
(Maris, 1993a, 1993b) and linear regression techniques discussed
above are based on robust estimation techniques and we feel
confident that they avoid the somewhat biased results obtained
when the linear transformation is based solely on the results
from a single individual, as are the proportion and z-score
transformations.

The second major result of our analyses with respect to potential
transformations is the general superiority of the z-score transfor-
mation over proportions. The results of our Monte Carlo simula-
tions are in accord with those of Bush et al. (1993) in indicating
that z-score-transformed latencies generally provide greater power
for detecting within-subject effects than do proportion-transformed
latencies. Our results indicate that this is the case even when the
large-scale constraints of the rate-amount model are applied to the
simulation. Moreover, z-score-transformed latencies provide
proper control over Type I errors for Group X Condition interac-
tions over a wider range of conditions than do proportion-
transformed latencies. Proportion-transformed latencies are inap-
propriate whenever linear Brinley functions fail to go through the
origin. As Table 1 and Figure 5 demonstrate, it is often the case
that linear Brinley functions have a sizable negative intercept.
Z-score-transformed latencies, however, are appropriate as long as
the Brinley function is generally linear. Of course, our analysis
also suggests that z-score-transformed latencies should be used
with caution when the relationship between the means and stan-
dard deviations of response latency distributions (i.e., the distri-
bution of individual response latencies for a particular participant
in a particular condition) varies across groups. Because of the bias
in the z-score transformation (see Equation 5), this could result in
the z-score-transformed latencies being unequally biased across
groups.

Regardless of which transformation method is applied, we cau-
tion researchers not to forget that the results of inference tests
applied to transformed data are interpretable only in terms of the
transformed dependent variable (in this case, response latency or
time). Thus, analyses of transformed latencies should always be
performed in conjunction with similar analyses performed on raw
latencies. In fact, interesting information can be gained from any
discrepancies between analysis of raw and transformed latencies.

A further caution is warranted with respect to interpretation of
transformed measures. The scope of the data at hand will deter-
mine the generality of the linear rescaling. If one has data from a
wide range of tasks with several experimental conditions (and a
wide range of individuals) that are well fit by the rate—amount
measurement mode] (i.e., inspection of scatter plots indicates the
data have the predicted linear constraints), then application of the
rate—amount model to estimate global processing parameters to be
used as a basis for transforming to a common scale (or, alterna-
tively, z-score transformations) will resuit in controlling for indi-
vidual differences in a more general cognitive speed parameter
than will similar transformations based on data from a more
limited range of tasks, conditions, and individuals. A transforma-
tion based on data from a single task should be viewed conserva-
tively as controlling for only task-specific cognitive speed.
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Other Methods for Correcting for Group Differences in
Overall Latency

Three other approaches to correcting for group differences in
overall response latency should be discussed at this point. First,
Madden (e.g., Madden et al., 1992, 1993) has proposed a linear
regression transformation that is similar to our proposed transfor-
mation. In fact, our regression transformation can be viewed as a
generalization of the approach taken by Madden et al., with the
addition of the rate-amount model as a theoretical motivation.
Madden’s approach does differ somewhat from ours in that the
group Brinley function is used rather than the inverse of the
individual Brinley function (see Equation 4); therefore, individual
differences variability is not taken into account. Furthermore,
Madden’s transformation is applied only to the control group to
produce a simulated experimental group, which is then statistically
compared with the raw latency results from the actual experimen-
tal group. Our approach is to transform all latencies to. a common
scale and compare analyses of raw and transformed latencies.

A second approach to correcting for group differences in overall
response latency that has been used in the literature is the log
transformation (e.g., Bush et al., 1993; Madden, 1990). The log
transformation works by changing a constant proportion to an
additive constant. That is, the log-transformed latencies from two
individuals whose latencies differ by a constant proportion of 2
(i.e., when one individual always takes exactly twice as long to
respond as the other) will result in transformed latencies that differ
by an additive constant. Because traditional repeated measures
ANOVA models handle such additive differences easily, the log
transformation is a candidate for correcting proportional differ-
ences. However, there are several problems with the log transfor-
mation that call its appropriateness into question. First, it is a
nonlinear transformation; thus, it represents a nonlinear rescaling
of the dependent measure, which could seriously compromise
interpretability (e.g., Townsend, 1992). Second, our analysis sug-
gests that the proportion transformation (see Equation 6) will
provide an unbiased linear rescaling if there truly are proportional
differences between individuals. Third, because many empirical
linear Brinley functions published to date in the literature fail to go
through the origin (i.e., are not proportional; see Table 1 and
Figure 5), the log transformation will often be inappropriate.

A third method for correcting for group differences in response
latencies involves applying a specific information-processing
model to the results of a specific task (Fisher & Glaser, 1996). This
contrasts with our approach of applying a general latent trait-type
model across all tasks. Fisher and Glaser proposed that a specific
latent network model of the fundamental cognitive processes re-
quired to perform a particular task be chosen (Fisher & Glaser,
1996, confine themselves to analyses of stochastic Program Eval-
uation and Review Technique networks [Schweickert, 1978]).
Response latency predictions can then be derived from the latent
network model, and process-specific parameters can be generated
for each group. Statistical tests may then be applied to see if the
process-specific latent network model fits the observed data better
than some common-process model (i.e., a model that explains
group differences in terms of equivalent changes across groups in
all processes associated with a task).

The analysis that Fisher and Glaser (1996) presented can be seen
as similar to ours with respect to identifying process-specific group

differences in information processing. Both the latent network
model approach and our common-process rate—amount model ap-
proach depend on finding systematic group differences in response
latencies above and beyond those predicted by a model of
common-process group differences in information processing. The
rate-amount rescaling approach presented in the present article
differs from that of Fisher and Glaser in that it depends on
traditional repeated measures ANOVA methodology to detect de-
viations from a common-process model, whereas the approach
taken by Fisher and Glaser depends on specification of a specific
network model of each task/condition. Fisher and Glaser’s ap-
proach also differs from the rate—~amount rescaling approach in that
the common-process model they use as the starting point in their
analysis predicts a linear group Brinley function that is propor-
tional (i.e., goes through the origin), which, as we have shown (see
Table 1 and Figure 5), is typically not the case. Furthermore, the
statistical test proposed by Fisher and Glaser does not take re-
peated measures into account and may therefore suffer from an
inflated Type I error rate, leading to inappropriately inflated rates
of acceptance of spurious Group X Condition interactions (e.g.,
Lorch & Myers, 1990). Thus, although Fisher and Glaser’s ap-
proach holds much promise for the future, it is unclear at this time
if the approach as presented will be useful to the majority of
researchers in the field because of its increased requirements in
terms of experimental design and task-specific model fitting and
the need for a more appropriate inferential test.

Processing Rate and Amount

Rate—amount models of information processing associated with
specific tasks have a long history (Luce, 1986). Well-known
examples include models of choice reaction time (Hick, 1952),
mental rotation (e.g., Cooper & Shepard, 1973; Shepard & Met-
zler, 1971), short-term memory scanning (e.g., Sternberg, 1975),
and visual search (e.g., Atkinson et al., 1969). However, these
models have not typically included latent variables for rate and
amount but rather have concentrated on factors such as numbers of
response alternatives or memory set size, which could be explicitly
manipulated in experiments. We have argued that the large-scale
linear structure of response latencies in the 0- to 2,000-ms range
across wide ranges of tasks, experimental conditions, and individ-
uals is evidence for general latent variables of cognitive speed and
processing amount. In an effort to provide a model that predicts a
generally linear structure for response latencies (see Equations
3-8), we have not argued for the most general rate—amount model
possible (see Equation 2). The most general model would include
the sum of person, condition, and interaction terms for the amount
of cognitive processing performed divided by the sum of person,
condition, and interaction terms for cognitive speed. Although
GALIMA can indeed provide an inferential statistical framework
for analysis of this more general model, such a model is inherently
nonlinear and far more complicated to analyze than the rate—
amount model we have proposed. We do feel, however, that
researchers who become comfortable with the rate~amount model
as proposed in the present article will find extensions of the model
within the GALIMA framework to be useful.
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Conclusion

The rate-amount model provides a measurement model for
mean response latencies that allows for identification of global
cognitive speed and processing-amount parameters, which may
provide useful information with regard to group differences in
global information processing. Identification of global processing
parameters also allows for the linear transformation of each indi-
vidual’s response latencies to a common information-processing
scale. In the absence of enough data to effectively estimate global
processing parameters with the proposed regression transforma-
tion, the z-score transformation can provide an approximate rescal-
ing. Such rescaling can be seen to be equivalent to the rescaling of
residuals from individual Brinley functions (see Figure 4). Anal-
yses of rescaled data may then be analyzed within a traditional
ANOVA framework and used to augment analyses of untrans-
formed response latencies. We have shown that small-scale sys-
tematic variability in the rescaled latencies can be effectively
detected even when, as is the case of Hale et al. (1995), the data are
well fit by a single linear Brinley function. Comparing the results
of analyses of raw and transformed latencies should help research-
ers to better identify and interpret Group X Condition interactions.
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Appendix A

Specification of the General Rate—Amount Model of Mean Response Latency

We now specify the general rate-amount model of mean response
latency and present equations detailing key predictions this model has for
the targe-scale structure of mean latencies across individuals and experi-
mental conditions. In developing this model, we assume that there are
enough observations included in each observed mean latency for the
sampling distributions of the mean latencies to be well approximated by a
normal distribution (i.e., the central limit theorem holds). We also assume
unequal variances for these sampling distributions, which leads to a situ-
ation in which some of the predictions derived from the model will be
approximations because no known solution exists for some of the resultant
distributions of the combination of random variables with unequal vari-
ances. We include the assumption of unequal variances in the anticipation
that the next level of development of the rate—amount model will include
theoretically motivated arguments regarding the relationship between the
intrinsic variability within an individual and mean latency for that individ-
ual for a particular condition. Such relationships have been reported in the
literature (e.g., Myerson, Widaman, & Hale, 1991; Myerson, Zheng, &
Hale, 1994; Myerson, Zheng, Hale, Jenkins, & Widaman, 1999).

Model Specification

We assume [/ individuals participate in J experimental conditions in
which multiple response latencies are measured for each condition and
mean response latency (L) in each condition is the dependent variable of
interest. The rate—amount model represents response latencies in terms of
information-processing amount performed by an individual in a particular
condition (i + 8, + w,) divided by a constant information-processing rate
(7, indicating individual differences in general efficiency of processing)

for that particular individual. Information-processing amount is represented -

by three additive components: the processing amount common to all
individuals and conditions (), the differential processing amount required
for the average individual to reliably respond in a particular condition (3,
indicating the differential difficulty of a condition), and the differential
processing amount performed by a particular individual across all tasks (w,
indicating individual differences in peripheral processes, such as response
initiation, and also in central processes, such criterion for response).

As can be seen in the far right of Equation Al, the assumptions above
result in a model in which the mean latency for the ith individual in the jth
condition can be expressed as the sum of (a) the ratio of overall
information-processing amount (8;) required to reliably make the correct
response to the information-processing rate (7;) of the individual, (b) an
additive constant attributable to each individual {(x; = [ + ®,1/7;), and (c)
a random error term (E,) that is normally distributed with a mean of zero
and a unique variance (N[0, a;]).

w+ 8+ w 8;
=t E ="+, +E

T Yoo

i wi=1.0,7=1.J. (Al)
We assume further independence of the error terms such that all covari-
ances are equal 1o zero.

Predictions of the Rate—Amount Model

The rate—amount model can be seen to impose a general linear structure
on the expected values of response latencies in the sense that five general
linear relationships are predicted in the overall structure of the response
latencies. The coefficients for this general linear structure are admittedly
complex, but they are linear nonetheless.

Prediction 1: The Individual Brinley Function

The rate—amount model (see Equation Al) predicts that the Brinley plot
of the expected values of the condition means for a particular individual as

a function of the expected values of the overall means for the same
conditions will be linear. This can be seen by holding the i subscript (i.e.,
individual) constant and varying the j subscript (i.., condition) in Equation

A2:
E[L,] = (:—;> E[L] + [ x = ( I) .z] : (A2)

where ¥ = 7, L.
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Prediction 2: Group Brinley Functions

The group Brinley function predicted by the rate—amount model can be
derived directly from the predicted individual Brinley function (see Equa-
tion A2). Prediction 2 is therefore a simple extension of Prediction 1. To
derive the between-groups Brinley function (i.e., the function relating the
condition means for one group as a function of those of a second group)
predicted by the rate-amount model, we first assume two groups, A and B.
We find that the rate—-amount model predicts that the expected values of the
condition means for Group A is a linear function of the expected values of
the condition means for Group B:

)E[Zsj] + [RA - (:—:é) RB], (A3)

=Y
>%

Fl = (

w ¥

E.
where 7F= 7771

Prediction 3: Latencies From a Condition
Let
Ki=b; T+ byt e (A4)

be defined using simple linear regression. Then it can be shown that the
rate—amount model (see Equation Al) predicts that, for a given experi-
mental condition (i.c., holding the subscript j constant), the expected value
of the mean latency for each individual is predicted to be linearly related
to the expected value of each individual’s overall mean:

J

5, + b, s+ [ 8+ by
+ b, il O A8 + b bo

3
+ 5% b AS
€ 5+ b e |. (A5
The term on the far right of Equation AS will sum to zero because of

properties of linear regression (see Equation A4) and can clearly be seen as
an error term for an equation with a linear form.

=

Prediction 4: Individual Standard Deviations and Overall
Means

First, we define an approximation for the expected value of the standard
deviations for each individual across conditions, given that no known exact
solution exists (see Equation B10).

E[S,]1=S8, + a. (A6)

For each individual, the standard deviation across experimental conditions
is predicted to be linearly related to that individual’s overall mean:

Ss. - Ss.bo Sae:
E[SL,,] = (S + bl>E[Li'] - (S + b]) B l: (8 + bl) * ai] o (AD
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where b, and b, are simple linear regression parameters obtained from
Equation A4 and ¢; is the error term from this regression. Although the
error terms in Equation A7 (i.e., the values contained in the rightmost
square bracket) do have a potentially nonlinear component because of the
inclusion of a; (see Equation B10), the remainder of Equation A7 takes a
general linear form, with multiplicative and additive constants.

Prediction 5: Condition Standard Deviations and Group Means

First, we define an approximation for the expected value of the standard
deviations for each condition across individuals, given that no known exact
solution exists (see Equation B10):

E[S,]=~S, +a; (A8)

For each experimental ‘condition, the standard deviation across individuals
is predicted to be linearly related to that condition’s overall mean:

7

S _ Sby
E[S.]= (?‘)E[L.,] + ( = ) + (¢; + a), (A9)

where 7¥ = 77! and where

S2.
“" (:( \/;bl.—ﬁ“—l) - 1}(@* b)S,.

Thus, we see that the left and middle portions of Equation A9 compose a
linear relationship between the expected value of the sample standard
deviation for a condition across individuals and the expected value of the
mean for a condition (i.e., including both a multiplicative and additive
constants). We alsc see that the far-right portion contains error terms with
potentially nonlinear components. However, these error terms will be
roughly linear under a wide range of conditions.

Appendix B

Approximation of the Expected Value of the Sample Standard Deviation for a Set of
Heterogeneous Normal Random Variables

Assume X;...X, are mutually independent and normally distributed
with N(p,, o). We are interested in the expected value of the sample
standard deviation (S) taken across this set of variables. However, because
the squared deviations in the sums of squares used to compute S,

B= > (X,- X), (BI)

=1

are not mutually independent, we define the transformation (Helmert’s trans-
formation), which does yield mutually independent transformed variables:

Y=L+ DI () X = i Xy).

(B2)

A well-known property of Helmert’s transformation is that the sum of the
transformed variable ¥, is equal to the sums of squares of the original variables:

n—1

2
My,
2 x'%(;;) (B3)
i=1

n n—1
B=> (X,~X)?= > V=
i=1 i=1 !
Because Y; is normal and mutually independent with unique variance and
mean, each ¥? is distributed as a weighted noncentral chi-square variable
with 1 df. The mean and variance of B are therefore:

n—1

E[B] = 3, 0;(1 + ?) = (= D&+ 3 (w— @) (B4

=1 i=1
and

n—1

2

MKy,
var(B) = , 2(a3)? (1 +2 ;TY) (BS)

i=1 Y
The distribution of B is unknown but can be effectively approximated
by a weighted chi-square variable with the same mean and variance as
B (e.g., Kulkarni & Shah, 1995). Thus, we define ¢ = v, sz, where C
is approximately disttibuted as B, E(C) = v,V,, and var(C) = VZ(2v,).

We then set EfB] = E{C] and var(B) = var(C) and solve for v, and
var(B) 3 2(E[B])?

v,. We find that v, = W and v, = TI'(B)‘ .

We now can show that

S= Bin—1) = \iln— Dx,, (B6)

It is well known that

L({v+1)/2) 4
T(w/2)  4v+1

ElxJ= 2 (BT

and therefore that

47,
ELS) = \nlln = 1) Elxal = iaal(n = 1) gy (B9)

We can now express £/S] in terms of the expected value and variance of X,.
We can also simplify our answer by recognizing that the ratio involving v,
above will be very near to one when v, is even modestly larger:

E[S] = (B9)

Finally, we define an arbitrary constant and remove the radical:

E[S]~S. +a,

S(f==mn

We now have an approximation for the expected value of the sample
standard (ieviation, which has both a linear and nonlinear component.
Although it can be shown-that the nonlinear component a in Equation B10
is approximately linear under a wide range of conditions, we consider this
component to be an error term in the development of the rate—amount
model presented in Appendix A.

(B10)

where
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