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Abstract

Chronometric studies of language and memory processing typically emphasize changes in mean response time (RT)
performance across conditions. However, changes in mean performance (or the lack thereof) may reflect distinct pat-
terns at the level of underlying RT distributions. In seven experiments, RT distributional analyses were used to better
understand how distributions change across related and unrelated conditions in standard semantic priming paradigms.
In contrast to most other lexical variables, semantic priming in standard conditions simply shifts the RT distribution,
implicating a headstart mechanism. However, when targets are degraded, the priming effect increases across the RT
distribution, a pattern more consistent with current computational models of semantic priming. Interestingly, priming
effects also increase across the RT distribution when targets are degraded and primes are highly masked, supporting a
memory retrieval account of priming under degraded conditions. Finally, strengths and limitations of alternative
approaches for modeling RT distributions are discussed.
© 2008 Published by Elsevier Inc.
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Breakthroughs in science often reflect improvements
in the measurement tool investigators use to study a phe-
nomenon. This can be most obviously seen in fields such
as astronomy and biology, wherein the developments of
higher magnification systems opened up new worlds for
exploration. The recent advances in neuroimaging meth-
ods are another prime example of the power of measure-
ment development. The present paper describes a step in
this direction by increasing the magnification of the
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chronometric tools used to study psycholinguistic, and
other response time (RT) dependent, phenomena.

Chronometric studies of language, memory, and
attention have accumulated a vast amount of knowledge
regarding the nature of representations, the processes
engaged to tap such representations, and the time-course
of the interactions between representations and pro-
cesses. In order to better understand how one might
increase the magnification of the standard chronometric
approach, let us briefly consider the implicit assump-
tions researchers make.

In standard paradigms, researchers often manipulate
a variable by including multiple observations (typically
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10-20) at each level of an independent variable (IV). A
mean is then typically calculated for each level of an
IV, and these means are submitted to inferential tests
(most often analyses of variance) to estimate how reli-
able effects are across participants (and/or across items).
Consider the classic semantic priming effect, which we
will target in the present study. Here, the finding is that
participants produce faster response latencies to a tar-
get, when the target word is related to a prime word
(e.g., DOCTOR-NURSE), compared to when it is unre-
lated (e.g., FOREST-NURSE)'. The implicit assump-
tion that researchers make is that the related and
unrelated conditions produce symmetric RT distribu-
tions, and hence, the mean is a reasonably good estimate
of the central tendency of these distributions. So, if one
observes a 50 ms semantic priming effect, this indicates
that the distribution of the related condition is shifted
50 ms away from the unrelated condition.

However, we all know that this implicit assumption is
wrong. That is, RT distributions are rarely symmetrical
around a mean, but are almost always positively skewed
(see Luce, 1986, for a comprehensive review). Fig. 1
reflects an RT distribution from a single participant
across approximately 2400 observations in lexical deci-
sion performance. Notice the strong positive skewing
of the distribution. Hence, returning to the 50 ms seman-
tic priming effect in the means, we are confronted with a
number of first-order reasons why one might obtain
such a difference: (a) The modal portion of the distribu-
tion may shift, without changing the tail; (b) The tail of
the distribution may increase without changing the
modal portion of the distribution; (¢) Both the modal
portion and tail may increase.

If researchers know that RT distributions are skewed,
and that there are multiple ways in which an effect in
means may be observed, then why does the field continue
to use estimates of the mean to gain insights into the cog-
nitive architecture? Clearly, there are many advantages in
support of the mean. First, and probably most impor-
tantly, the mean is relatively easy to calculate and under-
stand. Means are a fundamental summary statistic and
dominate much of our common knowledge of the world
(e.g., mean income, average miles per gallon, batting aver-
age, etc.). Second, the estimates are relatively stable. Why
should one worry about the underlying distributions if the
effects with means are replicable across studies? Third,
and related to this, higher-order estimates of the RT distri-
bution, such as skewness and kurtosis, are considerably
less reliable (see Ratcliff, 1979). Why spend the additional

! Here we use the term ‘“‘semantic” priming effect for
simplicity; however, it should be noted that some, if not most,
of the priming effects observed in these tasks may reflect
associative relations, instead of semantic (see Hutchison, 2003,
for a review).
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Fig. 1. Response time distribution for lexical decision perfor-
mance across 2428 words taken from Balota et al. (2004).

effort to capture more subtle aspects of RT distributions if
there is indeed a lack of stability in these estimates? In
order to obtain stable estimates of higher order moments,
one needs considerably more observations then the stan-
dard 10-20 observations per participant/cell. Does the
added benefit justify the cost?

Although there are advantages to the mean, we,
along with many others (e.g., Heathcote, Popiel, &
Mewhort, 1991; Luce, 1986; Ratcliff, 1979; Rouder,
Lu, Speckman, Sun, & Jiang, 2005; Van Zandt, 2002),
believe that the zeitgeist is appropriate for researchers
to move beyond the mean. The goal of the present paper
is to provide a review of recent developments and exten-
sions of RT distributional analyses to visual word recog-
nition research. We should emphasize here that these
arguments are not restricted to psycholinguistic vari-
ables, but indeed are relevant to all chronometric explo-
rations of performance. However, in order to exemplify
the power of this approach, we will focus on one of the
most frequently studied effects in language and memory
processing, i.e., the semantic priming effect.

Measuring aspects of the RT distribution: Beyond the
mean

If it is time to move beyond the mean in estimating
the influence of a variable or variables on RT distribu-
tions, how might one measure such influences? There
are typically three major approaches that are used in
the literature. First, one may have an explicit model that
predicts how an underlying RT distribution may change
as a function of a manipulation. Hence, one can simply
fit the empirical data to the model’s specific predictions
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regarding the RT distribution. An excellent example of
this is the use of the diffusion model by Ratcliff and col-
leagues (see, for example, Ratcliff, Gomez, & McKoon,
2004). A second approach is to fit an empirical RT dis-
tribution to a theoretical function that captures impor-
tant aspects of typical RT distributions. One can then
make inferences from the estimated parameters of the
theoretical function to determine the nature of an effect.
This approach has been advocated by Luce (1986),
among many others (e.g., Ratcliff, 1978; Rouder et al.,
2005; Van Zandt, 2000, 2002) to better understand
how variables influence RT distributions. Third, one
may simply plot the data directly to determine if there
are differential influences of a target variable on different
portions of the RT distribution. For example, one may
plot the mean of RTs across bins, called Vincentiles,
or specific quantiles (e.g., 10%, 20%, 30%, etc.). Here,
we will focus on the latter two approaches, but will have
more to say about the first approach later in the paper.

Fitting an obtained RT distribution to an explicit
mathematical function

There has been considerable work describing how best
to capture empirical RT distributions (see Heathcote,
Brown, & Mewhort, 2002; Luce, 1986; Rouder et al.,
2005; Van Zandt, 2000, 2002). There are many functions
available to fit RT functions, including the ex-Gaussian,
ex-Wald, Weibull, Gamma, among many others. The
advantages and disadvantages of the different approaches
have been extensively reviewed by Van Zandt (2000).
Although there may well be better functions available,
for reasons described below, a number of researchers have
used the ex-Gaussian function to capture aspects of RT
functions. Indeed, it was Ratcliff’s (1978, 1979) seminal
work which demonstrated the stability of the ex-Gaussian
estimates, and the power of this approach for testing spe-
cific predictions of models of memory retrieval. Here, we
will attempt to demonstrate the utility of the ex-Gaussian
approach for capturing visual word recognition
performance.

The ex-Gaussian function conceptualizes RT distribu-
tions as the convolution of two underlying distributions: a
Gaussian distribution and an exponential distribution.
These are displayed in Fig. 2. The mean and standard
deviation of the Gaussian component are captured by
two parameters, u and o, while the exponential function
is captured by a single parameter, t, which reflects its
mean and standard deviation. Importantly, ex-Gaussian
analyses can be used as a descriptive model for capturing
the influence of a variable on underlying RT distributions,
with the parameters having a direct relation to the mean of
a distribution. Specifically, the mean of an RT distribu-
tion is constrained so that it is the algebraic sum of the u
and 7t estimates obtained by fitting that distribution.
Hence, the ex-Gaussian function possesses an interesting
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Fig. 2. Gaussian (A) and exponential distributions (B) and
their convolution (C) for an ex-Gaussian distribution.

descriptive utility which provides an important connec-
tion to the extant mean-dominated literature.

Fig. 3 displays how a variable may influence the RT
distribution and estimates of the ex-Gaussian parame-
ters. For example, comparing Fig. 3A and B (taken from
Balota & Spieler, 1999), a variable may primarily shift
an RT distribution, which would be reflected in a change
in the p parameter. As noted earlier, this is the implicit
assumption that researchers make. Alternatively, com-
paring Fig. 3A and C, a variable may have an isolated
influence on the 7 component, influencing the tail of
the distribution. Finally, comparing Fig. 3A and D,
one can see that a variable may actually have no effect
on mean performance, but have opposing effects on
the underlying components of the RT distributions. In
fact, such a tradeoff in parameters was an important
observation made by Heathcote et al. (1991), which
was subsequently replicated by Spieler, Balota, and
Faust (1996). Specifically, in a color naming Stroop task,
the congruent condition, compared to the neutral condi-
tion, decreased p but increased . Since the mean is the
sum of these two parameters, there was no influence
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Fig. 3. Possible changes in distributions and the underlying
influences on mean estimates and the parameter estimates from
the ex-Gaussian analyses.

on the mean. Hence, it is possible that systematic trade-
offs in aspects of the RT distributions can mask differ-
ences in mean performance. Of course, such tradeoffs
can have important implications for computational
models (see Mewhort, Braun, & Heathcote, 1992).

Vincentile analyses
In order to more directly estimate the influence of a

variable on RT distributions, parameter estimates from
underlying functions such as the ex-Gaussian may be

supplemented by analyses of Vincentiles (or Quantiles).
Vincentile analyses provide mean estimates of ascending
bins of RTs for each condition. In these analyses, one
orders the RTs (from fastest to slowest) within each con-
dition and then plots the mean of the first 10%, the sec-
ond 10%, and so on. One can then plot the mean of the
Vincentiles across participants to obtain a description of
how the RT distribution is changing across conditions.
Importantly, one can also plot the differences between
two levels of a variable across Vincentiles to better
understand how the influence of a variable may change
as a function of the location in the RT distribution.
These are functionally equivalent to delta plots (see
Bub, Masson, & Lalonde, 2006).

Vincentile analyses should converge with the ex-
Gaussian parameter estimates in systematic ways. Con-
sider, for example, the idealized data in which a variable
simply shifts the RT distribution, which is reflected by a
change in p. This is shown in Fig. 4A in the closed circles.
On the other hand, consider how a variable that only
changes the tail of the distribution (i.e., ) would look in
the Vincentiles. This is shown in the open circles in the
same figure. Sigma can also influence the nature of the
observed Vincentiles. Here, the change in the size of ¢
(assuming no influence in other parameters) will produce
a set of functions that leverage at the midpoint. This is
shown in Fig. 4B. Of course, variables do not simply influ-
ence one parameter, but typically influence multiple
parameters. As shown below, the signature influence of
a parameter change in the Vincentiles can be particularly
helpful in further understanding how that variable is influ-
encing the underlying RT distribution.

Distributional analyses of standard lexical variables

Now that we are armed with some preliminary tools
for RT distributional analyses, let us consider the influ-
ence of variables on underlying RT distributions. There
has already been work investigating how variables influ-
ence the underlying RT distributions in lexical decision
and pronunciation performance (e.g., Andrews & Heath-
cote, 2001; Balota & Spieler, 1999; Plourde & Besner,
1997; Ratcliff et al., 2004; Yap & Balota, 2007; Yap,
Balota, Cortese, & Watson, 2006). Interestingly, these
studies typically show that variables often both shift and
skew RT distributions. For example, Fig. 5 shows the
influence of a set of standard lexical variables (word fre-
quency, stimulus degradation, lexicality, and animacy)
on lexical decision, pronunciation, and semantic classifi-
cation performance. The top four panels are taken from
the Yap et al. (2006) and the Yap and Balota (2007) stud-
ies, and the bottom four panels are from Andrews and
Heathcote (2001). As one can see, the effect of these vari-
ables increases across Vincentiles, and is typically
reflected by changes in both the x and 7 estimates.
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Fig. 4. Isolated effects of changes in the ex-Gaussian parameters on the underlying Vincentiles.

Extending distributional analyses to semantic priming

In the current study, we use distributional analyses to
examine the semantic priming effect, which is one of the
most widely studied effects in cognitive psychology (see
Neely, 1991, for a review). As noted earlier, this effect
simply reflects the facilitation of a speeded lexical deci-
sion or pronunciation response to a target that follows
a related word, compared to when it follows an unre-
lated word. This effect has been central to computational
models of memory retrieval (e.g., Masson, 1995; Plaut &
Booth, 2000; Ratcliff & McKoon, 1988), distinctions
between automatic and attentional processes (e.g.,
Balota, 1983; Neely, 1977), the nature of semantic/asso-
ciative representations (e.g., Balota & Paul, 1996; Jones,
Kintsch, & Mewhort, 2006; McRae, De Sa, & Seiden-
berg, 1997), and recent neuroimaging investigations
(e.g., Gold et al., 2006; Martin, 2005).

Given the available evidence regarding how variables
typically influence RT distributions (see Fig. 5), one
might expect to find both a shift and an increase in the
tail of the RT distribution as a function of semantic
relatedness. This also appears to be most compatible
with the predictions from the available computational
models. For example, according to the compound cue
model (Ratcliff & McKoon, 1988), priming influences
the drift rate in a diffusion process. If a variable has
an isolated effect on the drift rate, the most straightfor-
ward prediction would be a change in p, o, and 7 in the
distribution.? Simulations with Masson’s (1995) feature

2 However, it should also be noted that it is possible to
produce isolated effects on some of the parameters when there is
a change in drift rate from a simple random-walk process (a
relative of the diffusion model) in lexical decision performance
(e.g., Yap et al., 2006).
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Fig. 5. Examples of the effects of standard word recognition variables as a function of Vincentiles.

overlap model would also appear to predict changes
across the parameters (Spieler, 2000, personal communi-
cation). Finally, one might argue that the most straight-
forward prediction from the Plaut and Booth (2000)
model would be a non-linear change in the RT distribu-
tion, because this model relies heavily on the non-linear

logistic function relating settling times (a proxy for RT)
to prime-target featural overlap. Where one is at on this
function depends upon such variables as word fre-
quency, reading skill, and stimulus degradation.
Although possible, it is unlikely that one would hit the
“sweet spot” within the Plaut and Booth model, and find
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a simple shift in the RT distribution as a function of
prime-target relatedness.

In contrast to the available computational models,
one might expect additive effects of prime relatedness
based on metaphorical pre-activation (e.g., Neely,
1977) or headstart mechanisms (e.g., Forster, Mohan,
& Hector, 2003). Specifically, consider the possibility
that the prime produces some amount of activation for
the target and this pre-activation, assuming sufficient
time has passed, is completed before the target is pre-
sented. Such a simple pre-activation (headstart) account
would predict a simple shift in the RT distributions as a
function of prime-target relatedness.

Overview of the present experiments

In the first two experiments, we explored semantic
priming effects across two dimensions that have been
widely investigated in the priming literature. The first
experiment used the speeded pronunciation task. One
group of participants received the prime-target pairs at
a relatively short stimulus onset asynchrony (SOA) of
250 ms, while a second group of participants received
the prime-target pairs at a relatively long SOA of
1250 ms. This SOA manipulation has been well-studied
since the seminal paper by Neely (1977). Based on the
Posner and Snyder (1975) framework, Neely predicted
that the short SOA should be more reflective of an auto-
matic spreading activation process, whereas the long
SOA should be more reflective of a limited capacity
attentional component. Indeed, in an elegant demon-
stration of converging operations, Neely provided evi-
dence for such an automatic/attentional dissociation
across a set of variables. In fact, one could argue that
SOA manipulations have been the central way of distin-
guishing between more automatic and more attentional
processes (e.g., Balota, 1983; Balota, Black, & Cheney,
1992; Burke, White, & Diaz, 1987; den Heyer, Briand,
& Dannenbring, 1983; Favreau & Segalowitz, 1983;
Swinney, 1979).

The second experiment was identical to the first
experiment, except that the lexical decision task (LDT)
was used. There has been considerable interest in the
locus of semantic priming in speeded pronunciation ver-
sus lexical decision, with some researchers arguing that
the pronunciation task is a purer measure of pre-lexical
influences of primes on target processing (see, for exam-
ple, Balota & Lorch, 1986; Seidenberg, Waters, Sanders,
& Langer, 1984). Neely (1991) has argued, and subse-
quently demonstrated, that priming in lexical decision
performance reflects both a prelexical forward influence
from the prime to the target and a postlexical retrieval
process. This postlexical process reflects the possibility
that participants can use the relation between the prime
and target to bias the “word” response in lexical deci-
sion performance. Specifically, if the target is related

to the prime, it must be a word, because nonwords are
never related to primes. Given the possibility that the
influence of this check process may not be involved on
all trials, one might expect differences in the influence
of semantic priming on the underlying RT distributions
across lexical decision and speeded pronunciation per-
formance. Experiment 3 provides a replication of the
short SOA lexical decision results.

The final four experiments explore the utility of RT
distributions in understanding the joint effects of multi-
ple variables in both speeded pronunciation and lexical
decision performance. Here, we target the robust inter-
action between stimulus degradation and semantic relat-
edness. These studies nicely extend and replicate the
pattern observed in the first set of experiments and fur-
ther demonstrate how RT distributional analyses can be
particularly insightful for understanding the nature of
the interactions across variables.

Experiment 1: Effects of relatedness and SOA in
pronunciation

Method

Participants

All participants in the present experiments were
recruited from the Washington University undergradu-
ate psychology pool, had normal or corrected-to-normal
vision, and participated for course credit. Forty-eight
participants were in Experiment 1.

Stimuli

Three hundred words served as targets (see Table 1
for summary statistics for the primes and targets).
Related targets were the primary associates of the
primes according to the Nelson, McEvoy, and Schreiber
(1998) norms, and unrelated prime-target pairs were not
associates (i.e., forward and backward associate
strength = .000). Stimulus pairs were constructed so that
each target was paired with a related, unrelated, and

Table 1
Stimulus characteristics of the words used in the experiment
Factor Means (SDs in
parentheses)
Prime frequency 8.56 (2.0)
Prime length 5.44 (1.83)
Target frequency 10.09 (1.58)
Target length 4.83 (1.12)
Prime-target forward associative strength .660 (.115)
Prime-target backward associative strength 206 (.222)

Note: Frequency values =logHAL (Lund & Burgess, 1996)
norms. Associative strength was determined according to the
Nelson et al. (1998) norms.
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neutral prime (i.e., the word “BLANK”).> Three lists
were constructed via random assignment of target word
to prime condition. In each of these lists, 100 target
words were preceded by a related prime, 100 target
words were preceded by an unrelated prime, and 100 tar-
get words were preceded by a neutral prime. Lists were
counterbalanced across participants such that each tar-
get word occurred equally often in each of the three
prime contexts. Targets were initially randomly assigned
to conditions for a given list. The lists were divided into
four blocks, each consisting of 25 related pairs, 25 unre-
lated pairs, and 25 neutral pairs. Block order was also
counterbalanced across participants such that each
block of stimuli appeared equally often in the first, sec-
ond, third, or fourth position throughout the
experiment.

Procedure

A microcomputer with a 133 mHz processor running
in DOS mode was used to control the experiment. A 17-
in. monitor was set to 40-column mode for stimulus pre-
sentation. Vocal responses triggered a voice key (Gerb-
rands G1341T) connected to the PC’s real-time clock,
which recorded response latencies to the nearest ms.

Words were presented at the center of the computer
screen individually in white uppercase letters against a
black background. Within each block, the presentation
order was random. Ten practice trials preceded the
experimental trials. Participants were instructed to

3 In the first two experiments, we included a neutral prime
condition, but for the present purposes have decided not to
include this estimate to make inferences about facilitation of the
related and inhibition of the unrelated conditions, respectively.
There are two reasons for this decision. First, Jonides and Mack
(1984) have convincingly argued that finding an appropriate
neutral baseline (equated on all dimensions with the other prime
conditions) to measure facilitation and inhibition effects is nearly
impossible. We are particularly concerned about the influence of
differences in the RT distribution across neutral and word-type
prime stimuli, since these stimuli will have different alerting
characteristics across trials due to repetition of the neutral
primes. Second, we did not include the neutral condition in the
later experiments, and so for ease of comparison we do not
include these data in the main tables. However, analyses of the
neutral condition in Experiment 1 and 2 are provided here for
interested readers. For short SOA pronunciation (Mepated =
474 ms, M peuiral = 486 mS, My elared = 491 ms), both facilitation
(p =.001) and inhibition (p =.017) were significant. For long
SOA pronunciation (Mejateq =467 ms, Myeytral = 503 ms,
M unrelated = 504 ms), only facilitation was significant (p < .001).
For short SOA LDT (Miclateqa = 569 ms, M cuira = 614 ms,
M nrelated = 609 ms), only facilitation was significant (p <.001).
For long SOA LDT (Mielated = 592 mS, M eytral = 638 ms,
M nrelated = 649 ms), both facilitation (p <.001) and inhibition
(p = .039) were significant. In general, with this neutral prime, the
facilitatory effects appear more powerful than the inhibitory
effects.

silently read the first word and to read aloud the second
word as quickly and accurately as possible. Each trial
began with a blank screen for 2000 ms followed by a fix-
ation stimulus (+) appearing in the center of the screen
for 1000 ms. After the fixation stimulus, the prime
appeared either for 200 ms (short SOA) or 1000 ms (long
SOA). The prime was followed by a blank screen for
50 ms (short SOA) or 250 ms (long SOA). The blank
screen was replaced by the target, which remained on
the screen until the vocal response triggered the voice
key. After the pronunciation response, the experimenter
coded the trial as correct, incorrect (mispronunciation),
or noise (i.e., some extraneous noise triggered the voice
key or it failed to be triggered by the pronunciation
response). The coding of the response initiated the next
trial sequence. A mandatory one-minute break occurred
after each block of trials.

Design

Relatedness (related, unrelated, neutral) was manipu-
lated within participants, and SOA (short, long) was
manipulated between participants. The dependent vari-
ables were response latency and accuracy rate.

Results and discussion

Errors (3.1% across both conditions) and response
latencies faster than 200 ms or slower than 1500 ms were
first excluded from the analyses. Based on the remaining
observations, the overall mean and SD of each partici-
pant’s pronunciation latencies were computed.
Response latencies 2.5 SDs above or below each partic-
ipant’s respective mean latency were removed. These cri-
teria eliminated a further 2.1% of the responses.
ANOVAs were then carried out on the mean, accuracy,
and the ex-Gaussian parameters of the RT data. The
mean response latencies, accuracies, and ex-Gaussian
parameters are displayed in Table 2.*

4 In addition to examining RTs for correct trials, we also
report RTs for error trials (along with standard errors) as a
function of condition for each of the Experiments in the
Appendix. These data are based only on participants who had
at least one error in both the related and unrelated conditions.
As shown in the Appendix this greatly reduced the number of
participants in each experiment, and especially for pronuncia-
tion. Generally, error RTs were slightly longer than accurate
RTs. Furthermore, the effect of relatedness on error RTs was
not significant in any of the experiments, with the exception of
the masked priming in lexical decision with degraded targets
(Experiment 7), where the difference approached significance,
p <.10. However, because of the paucity of data in these
analyses, and the possibility that error trials may have multiple
distinct causes, one needs to exert caution in interpreting these
results.
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Table 2

Mean response latency, percent error rates, and ex-Gaussian
parameters as a function of Stimulus Onset Asynchrony, and
Prime-Target Relatedness for pronunciation performance in
Experiment 1

Mean %Errors u g T

Short SOA
Related 474 1.5 438 49 36
Unrelated 491 2.5 459 49 32
Effect 17 1.0 21 0 —4

Long SOA
Related 467 4.5 431 59 37
Unrelated 504 3.8 470 56 34
Effect 37 -7 39 -3 -3
Interaction 20 -1.7 18 -3 1

Response latencies

The main effect of relatedness was significant by partic-
ipants and items, Fp(1,46) =106.11, p <.001, MSE =
161.32, % =.70; F(1,299) = 247.53, p < .001, > = .45.
The main effect of SOA was not significant by participants
(Fp <1)oritems, p = .10. Therelatedness x SOA interac-
tion, Fj,(1,46) = 15.53, p <.001, MSE = 161.32, 0 =.25;
Fy(1,299) = 32.04, p < .001, MSE = 898.97, 5* = .10, was
also significant, with larger relatedness effects at the long
SOA condition.

Percent correct

There was no main effect of relatedness in accuracy
data by participants or by items, F, and F; < 1. The main
effect of SOA was significant by participants and by items,
Fy(1,46) = 17.54, p<.001, MSE=.00061, n*=.28;
Fi(1,299) = 34.00, p < .001, MSE = .0039, * = .10. The
relatedness x SOA interaction was also significant,
F,(1,46)=6.34, p=.015, MSE=.00028, 0 =.12;
F{(1,299) = 6.56, p =.011, MSE = .0033, > = .02; the
relatedness effect (higher accuracy for related targets)
was significant in the short (p =.019), but not long,
SOA condition.

Ex-Gaussian analyses

Ex-Gaussian parameters (u, o, t) were obtained for
each participant using continuous maximum likelihood
estimation (CMLE) in R (R Development Core Team,
2004). CMLE provides efficient and unbiased parameter
estimates (Van Zandt, 2000) while using all the available
raw data. Using Nelder and Mead’s (1965) simplex algo-
rithm, negative log-likelihood functions were minimized
in the R statistics package (c.f., Speckman & Rouder,
2004), with all fits successfully converging within 500
iterations. An alternative approach is to fit a specific
set of quantiles (e.g., Heathcote, Brown, & Cousineau,
2004). An excellent website for both continuous and
quantile fitting functions is available at http://www.new-

castle.edu.au/school/psychology/ncl/software_repository.
html (see Brown & Heathcote, 2003, for further
description).

For p, the main effect of relatedness, F(1,46) = 63.46,
p <.001, MSE = 34348, ;72 = .58, and the interaction,
F(1,46) =5.79, p = .020, MSE = 343.48, 112 =.11, were
significant, with larger relatedness effects in the long
SOA condition. However, only the main effect of SOA
was significant, F(1,46) = 6.31, p = .016, MSE = 260.60,
n* =.12 for ¢. Turning to 1, none of the effects were
significant.

In summary, Table 2 shows that the relatedness
effects for both short and long SOA targets are mediated
by the yu component, indicating that the semantic prim-
ing effect is largely reflected by distributional shifting.
Interestingly, the priming x SOA interaction is also
mediated by p, suggesting that the larger priming effects
observed at the long SOA primarily reflected greater
shifting for related, compared to unrelated, targets.

Vincentile analysis

As noted, a converging procedure for distributional
analysis is to plot the mean Vincentiles for the data.
Vincentizing averages RT distributions across partici-
pants (Andrews & Heathcote, 2001; Ratcliff, 1979; Rou-
der & Speckman, 2004; Vincent, 1912) to produce the
RT distribution for a typical participant. This approach
does not make any distributional assumptions, and
examines the raw data directly. In the present data, we
first ordered the data from fastest RT to slowest RT
for each subject within each condition. Then, we calcu-
lated the mean of the first 10%, the next 10%, etc. Vin-
centile plots are then computed by collapsing across
the same bins across subjects.

The mean Vincentiles for the different experimental
conditions are plotted in the top two-thirds of Fig. 6, with
the bottom third of Fig. 6 being the mean relatedness effect
as a function of Vincentiles and SOA. Note that for the
top two panels, the empirical mean Vincentiles are repre-
sented by data points and standard error bars, while the
estimated Vincentiles for the respective best-fitting ex-
Gaussian distribution are represented by lines. Presenting
the data in this manner is useful because it allows one to
visually assess the extent to which empirical and estimated
Vincentiles overlap, providing a measure of goodness of
fit. Clearly, the data are fitted well by the ex-Gaussian dis-
tribution, and the divergence between mean Vincentiles
and theoretical ex-Gaussian Vincentiles is typically smal-
ler than one standard error in most cases. The bottom
panel, which presents difference scores, depicts only
empirical Vincentiles.

In agreement with the ex-Gaussian analysis, it is clear
from Fig. 6 that the semantic priming effect in speeded
pronunciation is mediated by distributional shifting at
both the short and long SOAs, since, within each SOA
condition, the magnitude of the priming effect is approx-
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Fig. 6. Pronunciation performance from Experiment 1 as a
function of prime relatedness and Vincentiles in the short SOA
(top panel) and long SOA (middle panel) conditions, along with
the priming effects as a function of Vincentiles (bottom panel).
In the top and middle panels, participants’ mean Vincentiles
(M = related, A = unrelated) are represented by data points and
standard error bars. Best-fitting ex-Gaussian Vincentiles are
represented by lines (solid line =related, dashed
line = unrelated).

imately the same across the Vincentiles. Likewise, as dis-
cussed earlier, the relatedness x SOA interaction seems
to be reflected largely by more pronounced shifting for
the long SOA targets. In order to explore the reliability
of this pattern, we conducted an ANOVA with Vincen-
tile as a factor. Importantly, in the present and subse-
quent analyses of the Vincentiles, we used the
Greenhouse—Geisser correction for potential violations
of sphericity note that all Greenhouse-Geisser corrected

dfs were rounded to the nearest whole number. The
results from this analysis indicated that neither the relat-
edness by Vincentile (p=.31) nor the related-
ness X SOA x Vincentile interaction (F<1)
approached significance, confirming that the effect of
relatedness is relatively constant across the RT distribu-
tion, i.e., reflecting a simple shift.

In summary, the results from Experiment 1 indicate
that in speeded pronunciation performance, the influ-
ence of semantic priming is a shift in the RT distribu-
tion. This pattern occurred at both the short and long
SOAs, even though there was evidence of larger related-
ness effects at long SOAs. Given how other variables
affect RT distributions in word recognition experiments
(see Introduction), and the predictions from computa-
tional models, this pattern is surprising. These results
appear most consistent with simple pre-activation (head-
start) metaphors of priming in which the prime pre-acti-
vates (provides a headstart in processing) the target’s
lexical representation by some constant amount. Before
drawing inferences from these results, it is important to
determine if a similar pattern exists in the LDT, which
has been the primary target for the computational mod-
els of semantic priming.

Experiment 2: Effects of relatedness and SOA in lexical
decision

Method

Participants
Sixty undergraduates participated in Experiment 2.

Stimuli

Words were those employed in Experiment 1. Pro-
nounceable nonwords served as distracters and were
constructed by changing one or two letters in the target
words. There were four blocks of trials each consisting
of 75 prime-nonword pairs intermixed with 75 prime-
word pairs. Otherwise, the block composition was the
same as Experiment 1.

Procedure

The procedure for Experiment 2 was the same as that
employed in Experiment 1, with the following exceptions:
First, in Experiment 2, there were four blocks of 150 trials.
Second, in Experiment 2, participants responded to each
target by pressing either a key labeled “YES” (the slash
key) for a word decision, or one labeled “NO” (the Z
key) for a nonword decision. A 1500 ms blank screen fol-
lowed correct responses. For incorrect responses, a
200 Hz sound occurred for 750 ms while the message
“incorrect response” appeared. A blank screen lasting
750 ms followed this message. Third, ten lexical decision
(5 word and 5 nonword) trials preceded the test trials.
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Design

Relatedness (related, unrelated, neutral) was manipu-
lated within participants, and SOA (short, long) was
manipulated between participants. The dependent vari-
ables were response latency and accuracy rate.

Results and discussion

Errors (3.0% across both conditions) and response
latencies faster than 200 ms or slower than 3000 ms were
first excluded from the analyses. Using the trimming cri-
teria described in Experiment 1, a further 3.1% of the
responses were removed. The mean RT, accuracy, and
the ex-Gaussian parameters are displayed in Table 3.

Response latencies

For mean response latencies, the main effect of relat-
edness was significant, F,(1,58) =126.50, p <.001,
MSE = 52577, *=.69; F(1,299)=79.42, p<.001,
MSE =9845.14, 112 = .21. The main effect of SOA was
significant by items but not by participants, F, <1;
Fi(1,299) = 80.86, p <.001, MSE=3686.77, n*=2I.
The interaction was significant by items and approached
significance by participants, F,(1,58) =3.98, p =051,
MSE = 52571, n*=.06; Fy(1,299)=6.03, p=.015,
MSE = 3789.10, nz = .02, with larger relatedness effects
in the long SOA condition.

Percent correct

The accuracy data yielded a main effect of relatedness,
Fi(1,58) =32.68, p<.001, MSE=.00052, n*=.36;
Fy(1,299) = 45.44, p < 001, MSE = .0040, * = .13. The
main effect of SOA was not significant by participants,
F, <1, and approached significance by items, p = .073.
The interaction was not significant by participants or by
items.

Table 3

Mean response latency, percent error rates, and ex-Gaussian
parameters as a function of Stimulus Onset Asynchrony, and
Prime-Target Relatedness for lexical decision performance in
Experiment 2

Mean  %Errors u o T

Short SOA
Related 569 2.2 433 42 136
Unrelated 609 4.6 478 62 131
Effect 40 2.4 45 20 -5

Long SOA
Related 592 1.6 454 66 138
Unrelated 649 4.0 503 63 145
Effect 57 2.4 49 -3 7
Interaction 17 0 4 -23 12

Ex-Gaussian analyses

For p, only the main effect of relatedness was signif-
icant, F(1,58) =21.85, p<.00l, MSE =2869.68,
#* =.27. Turning to o, the relatedness x SOA interac-
tion approached significance, F(1,58) =3.94, p =.052,
MSE = 983.08, r]z = .06, with larger relatedness effects
in the short SOA condition. For 7, none of the effects
were significant.

In sum, the results from the ex-Gaussian analyses
show that consistent with the pronunciation results
from Experiment 1, the relatedness effects at the long
SOA condition in Experiment 2 primarily reflect dis-
tributional shifting, wherein there is only a change in
the p parameter as a function of prime relatedness.
However, when the SOA is short, the parameter esti-
mates provided a slightly different story. Here, both u
and ¢ are larger for unrelated, compared to related,
targets. We now turn to the Vincentile analyses to
determine if there is convergence with these parame-
ter estimates.

Vincentile analysis

The mean Vincentiles for the different experimental
conditions are plotted in Fig. 7, along with the best fit-
ting ex-Gaussian distribution. Fig. 7 (bottom panel)
shows that for the long SOA condition, the semantic
relatedness effect is mediated mainly by distributional
shifting. In contrast, in the short SOA condition, the
magnitude of the relatedness effect increases monotoni-
cally across Vincentiles. Relatedness effects are smallest
in the fastest Vincentiles, and increase as the Vincentiles
become slower. Statistical support for this observation
was provided by a Vincentile by relatedness analysis
which indicated that at the short SOA, the interaction
between Vincentile and relatedness approached signifi-
cance, F(2,45)=2091, p=.065, MSE=145441,
112 = .11, whereas there was no hint of such an interac-
tion at the long SOA, F < 1. To summarize, for the long
SOA condition, priming reflects mainly shifting (u), but
for the short SOA condition, priming involves both
shifting (1) and some influence in a.

Experiment 3: A replication of short SOA priming in
lexical decision

Overall, the results from the first two experiments
indicate that semantic priming primarily reflects distri-
butional shifting. The only discrepant pattern was found
at the short SOA lexical decision results, wherein there
was evidence that the relatedness effect increased system-
atically across Vincentiles, and this was primarily
reflected in a change in ¢ in the ex-Gaussian analysis.
Before discussing the implications of this pattern, an
attempt was made to replicate the pattern observed at
the short SOA condition in Experiment 2. Such a repli-
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Fig. 7. Lexical decision performance from Experiment 2 as a
function of prime relatedness and Vincentiles in the short SOA
(top panel) and long SOA (middle panel), along with the
priming effect as a function of Vincentiles (bottom panel). In the
top and middle panels, participants’ mean Vincentiles
(M = related, A =unrelated) are represented by data points
and standard error bars. Best-fitting ex-Gaussian Vincentiles
are represented by lines (solid line = related, dashed
line = unrelated).

cation would also provide further support for the stabil-
ity of RT distributional analyses.

Method

Participants
Sixteen undergraduates participated in Experiment 3.

Procedure and design

The design was identical to Experiment 2, with the
following exceptions. First, in Experiment 3, only the
short SOA condition was included, and the neutral con-
dition was omitted, so there were 150 observations per
cell. Second, in Experiment 3, participants responded
to word targets by pressing the apostrophe key and to
nonword targets by pressing the 4 key. Finally, each
trial began with a fixation mark (+) appearing on the
center of the screen for 2000 ms, followed by the prime
for 150 ms, then by a blank screen for 100 ms. The blank
screen was replaced by the target, which remained on the
screen until a button press was detected. For incorrect
responses, a 170 ms tone was presented simultaneously
with “Incorrect” displayed for 450 ms slightly below
the fixation point.

Results and discussion

Errors (6.2% across both conditions) and response
latencies faster than 200 ms or slower than 3000 ms were
first excluded from the analyses. Using the trimming cri-
teria described in Experiment 1, a further 2.9% of the
responses were removed. The mean RT, accuracy, and
ex-Gaussian parameters are displayed in Table 4.

For mean response latencies, the main effect of relat-
edness was significant by participants and by items,
1,(15) =596, p<.001; £(299)=6.27, p<.001. For
accuracy, the main effect of relatedness was not signifi-
cant by participants or by items. For u and ¢, the main
effects of relatedness were highly significant,
t(15)=6.72, p<.001, #(15)=2.77, p=.014 respec-
tively. Turning to 7, the relatedness effect was not signif-
icant, ¢ < 1. Table 4 shows that for the short SOA used
in Experiment 3, u and o, but not t, are larger for unre-
lated targets. This is a clear replication of the short SOA
condition in Experiment 2.

Vincentile analysis

The mean Vincentiles for the related and unrelated
conditions, along with the best fitting ex-Gaussian distri-
bution are displayed in the top two panels of Fig. 8. The
difference scores across related and unrelated conditions
are plotted in the bottom panel of Fig. 8. As shown at

Table 4

Mean response latency, percent error rates, and ex-Gaussian
parameters as a function of Prime-Target Relatedness for
lexical decision performance in Experiment 3

Mean Y%Errors u 4 T
Short SOA
Related 538 5.3 402 35 136
Unrelated 568 6.2 430 47 138
Effect 30 0.9 28 12 2
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Fig. 8. Lexical decision performance for the related and unre-
lated conditions and Vincentiles for the Experiment 3 (top panel),
and the priming effect as a function of Vincentiles (bottom panel).
In the top panel, participants’ mean Vincentiles (l = related,
A = unrelated) are represented by data points and standard error
bars. Best-fitting ex-Gaussian Vincentiles are represented by lines
(solid line = related, dashed line = unrelated).

the bottom, the semantic relatedness effect increases
monotonically across Vincentiles, and, as noted in the
ex-Gaussian analyses, is mediated by reliable effects of
shifting (1) and an increase in o. It should be noted,
however, that the Vincentile by Relatedness interaction
did not reach significance in this experiment, p = .174,
likely due to the smaller number of participants in this
study, compared to Experiment 2.

In summary, the results from Experiment 3 overall
provide a replication of the short SOA results of Exper-
iment 2. This pattern is quite distinct from the pronun-
ciation data at both the short and long SOAs in
Experiment 1, and also the long SOA lexical decision
data in Experiment 2, wherein there is a simple shift in
the RT distribution as a function of prime relatedness.
Of course, the important question is why one might find
the increasing relatedness effect across the RT distribu-
tion in the short SOA lexical decision experiments.
One possibility is that when the SOA is short, there is
insufficient time for the prime to be fully utilized before
participants make their decision. Because this pattern
was not found at the short SOA condition in speeded

pronunciation, it appears specific to the operations in
lexical decision. Consider the possibility that at the short
SOA, there is a race between the word recognition pro-
cesses that drive lexical decisions for the target in the
unrelated condition, and the influence of the prime.
The prime’s effect could include both a forward-acting
influence from the prime and a postlexical check process
that is specific to lexical decision performance (see
Neely, 1991). If this were the case, then the words that
produce faster response latencies in the LDT in the unre-
lated condition will produce smaller relatedness effects,
and as response latencies increase, there will be more
time for the prime to influence target processing. This
would produce the signature increasing relatedness effect
across the Vincentiles displayed in Fig. 8. At this point,
we will defer further discussion of this intriguing pattern
until the General discussion.

Semantic priming and target degradation: Implications
from RT distributions for interactive effects

We now turn to the utility of RT distributional anal-
yses in understanding how multiple variables combine to
influence visual word recognition performance.
Although the first two experiments produced interac-
tions, these effects included between-participant manipu-
lations, and the larger priming effects at longer SOAs
may reflect the influence of an additional predictive
attentional mechanism (see Neely, 1991).

Distributional analyses can be particularly instructive
regarding the stage where variables interact (see, for
example, Roberts & Sternberg, 1993; Yap & Balota,
2007). Regarding semantic priming, one of the standard
findings in the visual word recognition literature is that
semantic priming effects increase when targets are visually
degraded (see Becker & Killion, 1977; Borowsky & Bes-
ner, 1993; Meyer, Schvaneveldt, & Ruddy, 1975). Because
degrading a stimulus is typically viewed as influencing a
relatively early process in the visual word recognition
flow, this pattern has been taken as evidence for interac-
tions between top-down semantic support from related
primes and early visual processing (e.g., Becker & Killion,
1977). This interaction has received considerable atten-
tion in recent discussions, because of the additional pat-
tern that word frequency produces additive effects with
stimulus degradation, but interactive effects with semantic
priming, in lexical decision performance (see, for example,
Borowsky & Besner, 2006; Plaut & Booth, 2006). Using
additive factors logic, Borowsky and Besner (1993)
argued that this pattern indicates that semantic priming
has both an early influence reflected by the interaction
between context and degradation, and a later influence
reflected by the interaction between word frequency and
semantic context. Here, we will focus on the early influ-
ence of context, i.e., its interaction with stimulus degrada-
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tion (see Plourde & Besner, 1997; Yap & Balota, 2007, for In Experiments 4 and 5, we report two experiments
a discussion of distributional analysis of the joint effects of that manipulate stimulus quality and semantic context
word frequency and degradation). in speeded pronunciation and lexical decision perfor-
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Fig. 9. Hypothetical priming effects as a function of target degradation. The top panel indicates that the priming by degradation
interaction reflects an increase in priming (u) across the entire RT distribution. The middle panel suggests that the priming by
degradation interaction reflects an increase in skewing (t) in the RT distribution. The bottom panel indicates that the priming by
degradation interaction reflects both a shift and an increase in skewing.
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mance, respectively. Because of the discrepant results of
pronunciation and lexical decision performance at the
short SOA, we decided to use a sufficiently long SOA
(800 ms) in these experiments to determine if there is a
task-independent pattern of interactive effects at the
level of the RT distributions. Importantly, Experiments
4 and 5 also afford an opportunity to replicate the shift
in RT distributions as a function of relatedness for the
clear target conditions.

What should the nature of the stimulus quality by
semantic context interaction in mean response latencies
look like at the level of the RT distribution? If both stim-
ulus degradation and semantic context only influence the
same processing stage, the simplest of models might pre-
dict multiplicative effects of degradation. Because the first
two experiments show that semantic priming reflects a
shift in the RT distribution (at least at long SOAs), one
might expect the pattern depicted at the top of Fig. 9,
where the interaction is fully mediated by p. On the other
hand, it is possible that degradation of the target may pro-
duce an increase in response latency across the bins due to
the increased difficulty of target processing, because of
increased reliance on the primes for the more difficult tar-
gets. This pattern is most consistent with the pattern
depicted in the middle panel of Fig. 9, where the interac-
tion is fully mediated by 7. Finally, one might expect both
a shift in the priming effect and also an additional effect for
the particularly slow target words. This would be reflected
in the pattern at the bottom panel of Fig. 9, where the
interaction is mediated by both u and .

Experiment 4: Effects of relatedness and stimulus quality
in pronunciation

Method

Participants
Thirty-two undergraduates participated in Experi-
ment 4.

Apparatus

An IBM-compatible computer was used to control
stimulus presentation and to collect data. The stimuli
were displayed on a 17-inch Super VGA monitor, and
participants’ pronunciation responses were detected by
an Audio-Technica microphone connected to a PST
serial response box with an integrated voice key.

Stimuli

The stimuli were the same set of 300 prime-target
pairs used in the previous experiments. Across each
group of four participants, targets were counterbalanced
across related and unrelated conditions and degraded
and clear conditions. No prime or target was repeated
within a participant.

Procedure

Participants first received 10 practice trials followed by
4 experimental blocks of 75 trials, with mandatory breaks
occurring between blocks. The presentation sequence was
the same for both clear and visually degraded stimuli.
Stimuli were presented in 14 point Courier font. For the
degraded condition, letter strings were rapidly alternated
with a randomly generated mask of the same length. For
example, the mask &?# was presented for 14 ms, followed
by DOG for 28 ms, and the two repeatedly alternated until
the participant responded. The mask was generated from
random permutations of the following symbols
(@#$%&?+), with the proviso that the symbols were not
repeated within a mask. Although masks across trials
were uniquely randomly generated, the alternating masks
within a trial were always the same. Each trial consisted of
the following order of events: (a) a fixation point (+) at the
center of the monitor for 2000 ms, (b) a prime for 150 ms,
(c) a blank screen for 650 ms, and (d) the stimulus at the
fixation point’s location. The stimulus word remained
on the screen until a pronunciation response was detected.
Participants then coded their responses by pressing the left
mouse button for a correct response and the right mouse
button for an incorrect response.

Design

A 2 x 2 factorial design was used: both stimulus
quality (clear vs. degraded) and relatedness (related vs.
unrelated target) were manipulated within-participants.

Results and discussion

Errors (1.8% across both conditions) and response
latencies faster than 200 ms or slower than 3000 ms were
first excluded from the analyses. Any response latencies
beyond 2.5 SDs from the mean were then excluded. A
total of 2.9% of the responses were removed. The mean
RT, accuracy, and ex-Gaussian parameters are dis-
played in Table 5.

Response latencies

For mean response latencies, the main effects of stim-
ulus quality, Fy(1,31) = 62.31, p <.001, MSE = 2437.67,
0 = .67; F(1,299)=242.14, p <.001, MSE = 6582.01,
112 = .45, and relatedness, F(1,31)=42.37, p<.001,
MSE =815.18, »*=.58; F(1,299)=87.54, p<.001,
MSE = 4572.57, 172 = .23, were significant. The stimulus
quality x relatedness interaction was highly significant,
Fy(1,31)=11.26, p=.002, MSE=367.49, n>=.27,
F(1,299) =10.21, p=.002, MSE=7189.72, i*=.03.
As shown in Table 5, there were larger relatedness effects
for degraded targets compared to clear targets.

Percent correct
The accuracy data yielded main effects of stimulus
quality, F,(1,31)=7.50, p=.010, MSE=.0022,
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Table 5
Mean response latency, percent error rates, and ex-Gaussian
parameters as a function of Target Degradation, and Prime-
Target Relatedness for pronunciation performance in Experi-
ment 4

Mean Y%Errors " 4 T
Clear targets
Related 528 0.4 464 67 64
Unrelated 550 0.8 486 65 64
Effect 22 0.4 22 -2 0
Degraded targets
Related 586 1.6 477 65 108
Unrelated 630 4.2 508 67 122
Effect 44 2.6 31 -2 14
Interaction 22 2.2 9 0 14

n*=.20; F(1,299)=137.54, p<.001, MSE=.0041,
;12 =.11, and relatedness, Fy(1,31)=25.78, p<.001,
MSE = .00027, n*=.45; F(1,299)=31.76, p<.001,
MSE = .0021, 112 =.10. The interaction between stimu-
lus quality and relatedness was also significant,
Fy(1,31)=10.78, p=.003, MSE=.00034, n*>=.26;
F{(1,299) = 18.21, p < .001, MSE = .0019, 4> = .06, with
larger relatedness effects for degraded targets.

Ex-Gaussian analyses

For u, the main effects of stimulus quality,
F(1,31)=9.61, p = .004, MSE = 1032.45, n* = .24, and
relatedness, F(1,31) =22.00, p <.001, MSE =996.48,
n? = 42, were significant. The stimulus quality x related-
ness interaction did not reach significance, p = .22. Incon-
trast, none of the effects were significant for g, Fs <1.
Turning to 7, the main effect of stimulus quality was signif-
icant, F(1,31)=23.27, p<.001, MSE =3616.73, n* =
43, and the stimulus quality x relatedness interaction
approached significance, F(1,31) =3.40, p=.075,
MSE =45542, #*=.10. Separate analyses on the
degraded and clear target conditions indicated that there
was a reliable relatedness effect in 7 for the degraded tar-
gets, 1(31) = 2.08, p = .045, but not for the clear targets,
t < 1. Table 5 shows that the semantic relatedness effect
for clear words is mediated mainly by u (distributional
shifting), and that the stimulus quality x relatedness
interaction is mediated primarily by t (distributional
skewing), and to a lesser extent, by u (distributional
shifting).

Vincentile analysis

The mean Vincentiles are plotted in Fig. 10, along with
the best fitting ex-Gaussian function. Replicating the pat-
tern of data from Experiment 1, for clear targets, semantic
relatedness effects were mediated primarily by distribu-
tional shifting, since the magnitude of the relatedness
effect was approximately the same across the entire RT
distribution. For degraded targets, the larger relatedness

Clear Pronunciation (Unmasked)

900

800
700
g
= 600
=
'S
500
400
300
1 2 3 4 5 6 7 8 9 10
Degraded Pronunciation (Unmasked)
900
800
700
g
= 600
=
o
500
400
300
1 2 3 4 5 6 7 8 9 10
Stimulus Quality x Priming (Unmasked Pronunciation)
130
110
n
90
£
Py
[ A
£ 7 g
w
=S ] 1
c -
‘€ 50 e
= e
o
30
10 = 1
1 2 3 4 5 6 7 8 9 10

—=— Clear ---a--- Degraded

Fig. 10. Pronunciation performance from Experiment 4 as a
function of prime relatedness and Vincentiles in the clear target
(top panel) and degraded target (middle panel) conditions,
along with the priming effects as a function of Vincentiles
(bottom panel). In the top and middle panels, participants’
mean Vincentiles (Bl = related, A = unrelated) are represented
by data points and standard error bars. Best-fitting ex-Gaussian
Vincentiles are represented by lines (solid line = related, dashed
line = unrelated).

effect, relative to clear targets, remained relatively invari-
ant across the early and middle Vincentiles. However, for
the later slow Vincentiles, the relatedness effect for
degraded targets steadily grew as RTs became longer. In
other words, although degradation increased relatedness
effects for all the items, it had disproportionately large
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effects on the slowest items. This is consistent with a reli-
able stimulus quality x relatedness x Vincentile interac-
tion, F(2,72) = 7.15, p = .001, MSE = 1149.85, 5* = .19.
Separate analyses on the clear and degraded items indi-
cated that there was a highly reliable interaction between
relatedness and Vincentile for the degraded items,
F(2,59) = 6.94, p=.002, MSE =2147.99, * = .18, but
not for the clear items, F < 1.

In sum, the pronunciation results from Experiment 4
replicate and extend the pronunciation results from
Experiment 1. Specifically, for clear targets there was a
simple shift in the RT distributions, precisely the same
pattern found in Experiment 1. However, for degraded
targets there is a clear increase in priming, and this
occurs most strongly for the later portions of the RT dis-
tribution. This pattern does not reflect a simple multipli-
cative influence of degradation on semantic priming, but
instead reflects primarily an increase in skewing and
some more modest shifting of the distribution, as shown
in the bottom panel of Fig. 10. We now turn to lexical
decision performance to determine if this pattern is
task-specific.

Experiment 5: Effects of relatedness and stimulus quality
in lexical decision

Method

Participants
Thirty-two undergraduates participated in Experi-
ment 5.

Apparatus
Identical to Experiment 4 except that participants’
responses were made on a computer keyboard.

Stimuli

Includes all the stimuli used in Experiment 4,
together with another 300 primes that were matched to
the original 300 primes in terms of length, word fre-
quency, and initial letter. These 300 new primes were
then randomly paired with nonwords; the nonwords
were formed by rearranging the letters of the new primes
to form pronounceable nonwords. The same counterbal-
ancing scheme used in Experiment 4 was used in Exper-
iment 5.

Procedure

Participants pressed the apostrophe key for words
and the A key for nonwords. Responses were followed
by a 1600 ms delay. If the response was incorrect,
450 ms of that 1600ms was consumed by a 170 ms tone
that was presented simultaneously with “Incorrect” dis-
played slightly below the fixation point. Participants
were presented with 20 practice trials, followed by eight

experimental blocks of 75 trials, with mandatory breaks
occurring between blocks.

Results and discussion

Errors (5.8% across both conditions) and response
latencies faster than 200 ms or slower than 3000 ms were
first excluded from the analyses. Using the same criteria
used in Experiment 4, a further 2.3% of the responses
were excluded. The mean RT, accuracy, and the ex-
Gaussian parameters are displayed in Table 6.

Response latencies

For mean response latencies, the main effects of stimu-
lus quality, F,(1,31) = 117.68, p <.001, MSE = 3123.91,
W =.79; F(1,299) =362.90, p <.001, MSE = 9786.72,
112 =.55, and relatedness, F,(1,31)=47.66, p <.001,
MSE = 1807.89, * = .61; F(1,299) = 172.81, p <.001,
MSE = 5121.53, * = .37, were significant. The stimulus
quality x relatedness interaction was also significant,
F(1,31)=22.33, p<.00l, MSE=>531.11, 0 =.42;
F{(1,299) = 23.95, p<.001, MSE = 4855.60, *=.07,
with larger relatedness effects for degraded targets.

Percent correct

The accuracy data again yielded main effects of stimu-
lus quality, F,(1,31)=38.07, p<.001, MSE=.0012,
W =.55 F(1,299)=3536, p<.001, MSE=.012,
nz =.11, and relatedness, F,(1,31)=33.59, p <.001,
MSE = 00086, »*=.52; F(1,299)=47.52, p<.001,
MSE = .0057, 5* = .14. The interaction between stimulus
quality and relatedness was also significant, F,(1,31) =
6.18, p=.019, MSE=.00056, n*=.17; F(1,299)=
6.78, p = .010, MSE = .0048, 5> = .02, with larger relat-
edness effects for degraded targets.

Table 6
Mean response latency, percent error rates, and ex-Gaussian
parameters as a function of Target Degradation, and Prime-
Target Relatedness for lexical decision performance in Exper-
iment 5

Mean Y%Errors I 4 T
Clear targets
Related 550 2.0 428 47 122
Unrelated 583 4.0 460 49 123
Effect 33 2.0 32 2 1
Degraded targets
Related 638 4.7 479 57 159
Unrelated 709 8.8 529 48 181
Effect 71 4.1 50 -9 22
Interaction 38 2.1 18 —11 21
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Ex-Gaussian analyses

For u, the main effects of stimulus quality,
A1,31)=192.42, p<.001, MSE=601.12, #*= .86,
and relatedness, F(1,31) =46.10, p <.001,
MSE =1154.10, 112 = .60, were significant. The stimulus
quality x relatedness interaction was also significant,
F(1,31)=488, p=.035, MSE=536.80, i*=.14,
reflecting larger relatedness effects in u for degraded tar-
gets than clear targets. None of the effects were signifi-
cant for ¢. Turning to 7, the main effect of stimulus
quality was significant, F(1,31) =26.61, p <.001,
MSE = 2664.24, n* = .46. The main effect of relatedness
was not significant (p =.11), but the stimulus qual-
ity x relatedness interaction approached significance,
F(1,31) =3.48, p=.072, MSE = 957.55, * = .10, with
larger relatedness effects for degraded targets. Separate
analyses of the degraded and clear targets indicated that
there was a reliable relatedness effect in t for the
degraded targets, #(31) =1.93, p <.05, one tailed, but
not for the clear targets, < 1. Table 6 shows that the
semantic relatedness effect for clear words is mediated
primarily by u (distributional shifting), whereas the stim-
ulus quality x relatedness interaction is mediated by a
mixture of u and 7 (distributional shifting and skewing).
This converges nicely with the pronunciation data from
Experiment 4 (see Table 5).

Vincentile analysis

The mean Vincentiles are plotted in Fig. 11, along with
the best fitting ex-Gaussian function. As shown in Fig. 11,
the semantic relatedness effects for clear targets were again
primarily mediated by distributional shifting, whereas the
relatedness effect for the degraded targets increases and
appears to be relatively invariant across the early to mid-
dle Vincentiles, but then grows steadily at the later Vin-
centiles. This is consistent with the significant stimulus
quality x relatedness x Vincentile interaction, F(2,59)
=3.70, p=.033, MSE = 2543.50, #* = .11, which indi-
cates that the shape of the semantic relatedness effect dif-
fers for clear and degraded targets. Indeed, separate
analyses on the clear and degraded target conditions indi-
cated that there was no evidence of a Vincentile by relat-
edness interaction for the clear conditions, F<1,
replicating the long SOA condition from Experiment 2,
but a reliable interaction for the degraded conditions,
F(2,47) =3.99, p = .036, MSE = 6000.09, > = .11. This
pattern of results is identical with the interactive effects
found in Experiment 4 for the pronunciation task.

The results from both Experiments 4 and 5 do not
suggest that stimulus degradation produces a simple
multiplicative influence on semantic priming at the level
of the underlying RT distributions. Specifically, because
the long SOA data from Experiments 1 and 2 indicate
that priming primarily produces distributional shifting,
a simple multiplicative model would simply predict
greater distributional shifting in the degraded condition
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Fig. 11. Lexical decision performance from Experiment 5 as a
function of prime relatedness and Vincentiles in the clear target
(top panel) and degraded target (middle panel) conditions,
along with the priming effects as a function of Vincentiles
(bottom panel). In the top and middle panels, participants’
mean Vincentiles (Ml = related, A = unrelated) are represented
by data points and standard error bars. Best-fitting ex-Gaussian
Vincentiles are represented by lines (solid line = related, dashed
line = unrelated).

(see Fig. 9). However, this is clearly not the pattern
obtained. Specifically, we replicated the distributional
shifting in the clear conditions, but in the degraded con-
ditions, there was evidence of both a multiplicative influ-
ence at the short to medium Vincentiles, but for very
slow RTs, there was clear evidence of exaggerated relat-
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edness effects. Moreover, the pattern observed for the
degraded conditions is more typical of the influence of
other variables on RT distributions in the visual word
recognition literature, as shown earlier in Fig. 5.

Why might the relatively slow components of the RT
distribution benefit considerably more from semantic
priming? One possibility is that participants may use a
more controlled retrieval process when targets become
particularly difficult to resolve, i.e., the targets that are
in the slow end of the RT distribution. The notion here
is that this would be quite distinct from the standard for-
ward priming influence that may produce the shift in the
RT distribution. If this were indeed the case, then one
might eliminate the exaggerated influence of prime type
at the slow end of the RT distribution when the primes
are no longer available for explicit retrieval. Hence,
Experiments 6 and 7 are a replication of Experiments 4
and 5 with highly masked primes. The prediction is that
if the primes are unavailable for conscious processing,
one may eliminate the exaggerated influence of priming
at the tail of the distribution, thereby leaving only the for-
ward influence of the prime. If this is indeed the case, then
one might not expect the relatedness by stimulus quality
interaction when primes are unavailable for conscious
processing.

Experiment 6: Effects of relatedness and stimulus quality
in pronunciation performance with highly masked primes

Method

Participants
Forty undergraduates participated in Experiment 6.

Apparatus, stimuli, procedure, and design

Same as Experiment 4 except that primes were
masked. Each trial consisted of the following order of
events: (a) a blank screen for 500 ms, (b) a forward mask
of hashes (e.g., ######) that is length-matched to the
prime for 56 ms, (c) a prime for 42 ms, and (d) the target
stimulus at the fixation location, which served as the
backward mask.

Results and discussion

Errors (3.8% across both conditions) and response
latencies faster than 200 ms or slower than 3000 ms were
first excluded from the analyses. A further 3.4% of the
responses were identified as outliers and were excluded.
The mean RT, accuracy, and ex-Gaussian parameters
are displayed in Table 7.

Response latencies
For mean response latencies, the main effects of stim-
ulus quality, F,(1,39)=172.82, p<.00l, MSE=

Table 7

Mean response latency, percent error rates, and ex-Gaussian
parameters as a function of Target Degradation, and Prime-
Target Relatedness for pronunciation performance with
masked primes in Experiment 6

Mean %Errors u 4 T
Clear targets
Related 584 1.8 529 84 56
Unrelated 584 1.5 534 85 50
Effect 0 -3 5 1 —6
Degraded targets
Related 670 5.8 558 93 111
Unrelated 699 6.1 583 100 117
Effect 29 0.3 25 7 6
Interaction 29 0.6 20 6 12

2330.07, i = .82; F(1,299) = 739.51, p < .001, MSE =
4304.52, 112 =.71, relatedness, Fj(1,39) =17.60,
p<.001, MSE=507.98, »*=.31; F(1,299)= 1429,
p<.001, MSE =3944.19, 112 =.05, and the stimulus
quality x relatedness interaction were significant,
Fy(1,39)=10.58, p=.002, MSE=826.63, n*=2l;
F(1,299) = 13.02, p <.001, MSE =4856.77, n*=.04.
It is particularly noteworthy that, as shown in Table 7,
there was absolutely no evidence of relatedness (0 ms)
under the masked conditions with clear targets; how-
ever, for degraded targets, there was clear evidence for
reliable relatedness effects, #39) = 3.90, p <.001.

Percent correct

The accuracy data only yielded a main effect of stim-
ulus quality, F,(1,39) =21.40, p <.001, MSE = .0034,
ni =.35; F(1,299)=114.68, p<.001, MSE = .0048,
n-=.28.

Ex-Gaussian analyses

For pu, the main effects of stimulus quality,
F(1,39) =33.29, p<.001, MSE=1830.09, 5*= 46,
and relatedness, F(1,39)=8.04, p=.007, MSE =
1103.99, #*> = .17, were significant. The stimulus qual-
ity x relatedness interaction approached significance,
F(1,39) = 3.04, p = .089, MSE = 1113.98, 5* = .07, with
the relatedness effect only reaching significance for
degraded targets, #(39)=2.79, p=.008, and not
approaching significance for clear targets, < 1. Only
the main effect of stimulus quality reached significance
for o, F(1,39)=6.49, p=.015, MSE=2889.51, n*=
.14, Turning to 7, the main effect of stimulus quality
was again significant, F(1,39) =35.39, p<.001,
MSE = 4247.39, y* = .48. Although neither ¢ nor 7 pro-
duced a reliable stimulus quality by relatedness interac-
tion, as shown in Table 7, both components produced an
increasing relatedness effect in the degraded condition,
which is consistent with the Vincentile analyses below.
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In sum, there is no masked semantic priming for clear
targets, and the masked priming effect for degraded
words is reflected predominantly in a change in y, and
to a lesser extent, by a change in ¢ and in .

Vincentile analysis

The mean Vincentiles are plotted in Fig. 12, along
with the best fitting ex-Gaussian function. As shown,
the masked priming effect for clear targets is absent
across Vincentiles. For degraded targets, the masked
priming effect is smallest at the fastest Vincentiles and
grows steadily as the Vincentiles become slower. This
increase across Vincentiles is consistent with the numer-
ical increases in ¢ and 7, mentioned above. Importantly,
the stimulus quality x relatedness x Vincentiles interac-
tion was reliable, F(1,55)=3.84, p=.042, MSE =
8508.48, > = .09. Further exploration of this interaction
indicated that the Vincentile by relatedness interaction
did not approach significance for the clear targets,
F<1, but was reliable for the degraded targets,
F(1,54) =3.80, p=.044, MSE=13238.01, 5*=.09.
Hence, masked priming does not simply shift the RT
distribution when primes are degraded but it appears
to increase across the Vincentiles, as in the previous
experiments with stimulus degradation.

Experiment 7: Effects of relatedness and stimulus quality
in lexical decision performance with highly masked primes

Method

Participants
Thirty-two undergraduates participated in Experi-
ment 7.

Apparatus, stimuli, procedure, and design

Identical to Experiment 5, but using the masking
priming conditions described in the Method section for
Experiment 6.

Results and discussion

Errors (7.2% across both conditions) and response
latencies faster than 200 ms or slower than 3000 ms were
first excluded from the analyses. Using the trimming cri-
teria described earlier, a further 2.9% of the responses
were excluded. The mean RT, accuracy, and ex-Gauss-
ian parameters are displayed in Table 8.

Response latencies

For mean response latencies, the main effects of stimu-
lus quality, Fp(1,31) =78.10, p <.001, MSE = 7121.60,
0’ =.72; F(1,299) = 1105.42, p < .001, MSE = 4852.90,
n*=.79, relatedness, F,(1,31)=27.84, p<.001,
MSE = 505.40, n*= .47, F(1,299)=12.97, p<.001,
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Fig. 12. Pronunciation performance from Experiment 6 as a
function of masked prime relatedness and Vincentiles in the
clear target (top panel) and degraded target (middle panel)
conditions, along with the priming effects as a function of
Vincentiles (bottom panel). In the top and middle panels,
participants’ mean Vincentiles (ll = related, A = unrelated) are
represented by data points and standard error bars. Best-fitting
ex-Gaussian Vincentiles are represented by lines (solid line =
related, dashed line = unrelated).

MSE = 11721.26, 112 =.04, and the stimulus qual-
ity x relatedness interaction were significant,
Fy(1,31)=4.89, p=.034, MSE=471.18, n*=.14;
Fy(1,299) = 5.59, p = .019, MSE = 5260.04, > = .02. As
shown in Table 6, there were larger masked priming effects
for degraded targets compared to clear targets. Although
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Table 8

Mean response latency, percent error rates, and ex-Gaussian
parameters as a function of Target Degradation, and Prime-
Target Relatedness for lexical decision performance with
masked primes in Experiment 7

Mean Y%Errors n a T
Clear targets
Related 562 4.1 460 42 103
Unrelated 575 5.4 469 45 106
Effect 13 1.3 9 3 3
Degraded targets
Related 686 7.3 519 47 167
Unrelated 715 8.7 530 51 185
Effect 29 1.4 11 4 18
Interaction 16 0.1 2 1 15

the effects were larger for degraded than clear targets, in
contrast to the pronunciation results of Experiment 6,
there was evidence in lexical decision of reliable masked
priming even for the clear targets, #(31) = 3.00, p = .005.

Percent correct

The accuracy data yielded main effects of stimulus
quality, Fy(1,31) = 35.47, p < .001, MSE = .00094, 1> =
.53; F(1,299) = 42.69, p < .001, MSE = .0073, > = .13,
and relatedness, Fy(1,31)=9.59, p=.004, MSE=
00061, 5> = .24; F(1,299)=7.38, p=.007, MSE=
.0075, i = .02. The interaction was not significant by par-
ticipants or by items, F, and F; < 1.

Ex-Gaussian analyses

For p, the main effects of stimulus quality,
F(1,31)=123.54, p<.001, MSE=937.94, n5*= 80,
and relatedness, F(1,31)=8.63, p=.006, MSE =
362.64, 112 = .22, were significant, but the stimulus qual-
ity x relatedness interaction was not significant, F< 1.
In contrast, none of the effects were significant for o.
Turning to 7, the main effects of stimulus quality,
F(1,31)=41.95, p<.001, MSE=3917.03, n*=.58,
and relatedness, F(1,31)=5.25 p=.029, MSE=
748.69, nzz .15, were significant. The stimulus qual-
ity x relatedness interaction was also significant,
F(1,31) = 4.50, p = .042, MSE =423.54, #* = .13, with
larger relatedness effects in the degraded condition.
Table 6 shows that the semantic priming effect for clear
words is mediated primarily by p (distributional shift-
ing), while the stimulus quality x relatedness interaction
is mediated by a mixture of u and t (distributional shift-
ing and skewing).

Vincentile analysis

The mean Vincentiles are displayed in Fig. 13, along
with the best fitting ex-Gaussian functions. Masked
semantic priming effects for clear targets were smaller

at the fast Vincentiles, and increased slightly towards
the slowest Vincentiles. For degraded targets, the
masked priming effect is smallest at the fastest Vincen-
tiles and grows much more strongly across Vincentiles.
Although the stimulus quality x relatedness x Vincen-
tiles interaction was not significant, p = .128, separate
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Fig. 13. Lexical decision performance from Experiment 7 as a
function of masked prime relatedness and Vincentiles in the
clear target (top panel) and degraded target (middle panel)
conditions, along with the priming effects as a function of
Vincentiles (bottom panel). In the top and middle panels,
participants’ mean Vincentiles (ll = related, A = unrelated) are
represented by data points and standard error bars. Best-fitting
ex-Gaussian Vincentiles are represented by lines (solid line = -
related, dashed line = unrelated).
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analyses of the clear and degraded target conditions
yielded a reliable interaction between Vincentile and
masked priming for the degraded targets,
F(2,64) = 4.84, p=.010, MSE =3219.77, > = .14, but
not for the clear targets, F'<1. This pattern indicates
that the shape of the relatedness effect is modulated by
the stimulus quality of the target.

The results from Experiment 6 and 7 are clear. In
both pronunciation and lexical decision performance,
there was clear evidence for a priming by degradation
interaction even when primes were highly masked and
unavailable for explicit conscious processing. Hence,
the pattern observed in the RT distributions, reflecting
the degradation by relatedness interaction in Experi-
ments 4 and 5, cannot be attributed to explicit retrieval
of a clearly presented prime. Of course, one can always
question the quality of the masking. However, because
the clear conditions in the pronunciation performance
of Experiment 6 provided no evidence of masked prim-
ing, the masking was sufficient to eliminate the strong
effects from these same primes that were observed in
Experiments 1 and 4. Interestingly, there was also a
change in the overall magnitude of the masked priming
effects as a function of target degradation. Specifically,
in both Experiments 6 and 7, there was evidence that
the masked priming effects increased when the target
was degraded. Hence, instead of decreasing reliance on
highly masked primes under target degraded conditions,
it appears that participants increase their reliance. This is
important because it suggests that the threshold at which
there is an influence of the prime is a reflection of the
utility of the prime information, as suggested by Whit-
tlesea and Jacoby (1990) and Bodner and Masson
(2001), and described further below.

General discussion

The goal of the present experiments was to demon-
strate the power of RT distributional analyses to
develop a better understanding of a fundamental finding
in the psycholinguistics literature, the semantic priming
effect. If semantic priming behaved as other standard
variables in the visual word recognition literature, one
would expect an increasing effect of the variable across
the RT distribution. Such a pattern would appear to
be most compatible with predictions from computa-
tional models of priming (e.g., the compound cue model
of Ratcliff & McKoon, 1988). However, this was not the
pattern observed in the present series of experiments.
Specifically, when the target was presented in a clear
non-degraded fashion, distributional shifting was
observed in the results of Experiment 1 (short SOA
and long SOA), Experiment 2 (long SOA), and Experi-
ments 4, 5, and 7. The only conditions where distribu-
tional shifting did not occur for clearly presented

targets was when the prime was presented for a short
SOA, and the task was lexical decision (Experiment 2
and replicated in Experiment 3). In Experiment 6, where
masked primed pronunciation was used, the clear target
conditions were uninformative, since there was no evi-
dence of priming in these conditions.

In contrast to the nature of the semantic priming
effect under clear target conditions, a markedly different
pattern was observed when the target was degraded.
Specifically, in Experiments 4, 5, 6, and 7, there was evi-
dence of an increased influence of the prime across the
RT distribution. This qualitative change in the priming
effects (i.e., from a shift with clear targets to an increase
across the RT distribution for degraded targets) would
appear to be most consistent with qualitatively different
processes being engaged for clear versus degraded tar-
gets. Interestingly, this general pattern occurred both
when the primes were clearly available (Experiments 4
and 5) and when the primes were highly masked (Exper-
iments 6 and 7).

In considering the implications of the present results,
we will focus on two general issues: First, we will discuss
the utility of RT distributional analyses, noting some
limitations in the present approach. Second, we discuss
the theoretical implications of the present results for
models of semantic priming.

RT distributional analyses

In the current paper, we have attempted to demon-
strate the utility of RT distributional analyses for better
understanding the influence of variables in response
latency studies. We have utilized two different tech-
niques, ex-Gaussian analyses and Vincentile analyses,
to capture the influence of variables. We believe the con-
vergence of the techniques is particularly helpful. How-
ever, it is also important to note limitations of this
approach, and discuss possible alternative approaches.

Are RT distributions sufficiently stable to make strong
inferences?

As one increases the power of a measurement device,
it is possible that one may be measuring noise. Return-
ing to the microscope metaphor, one may be looking
at a fleck of dust instead of a targeted cellular compo-
nent. So, how stable are the RT distributional patterns?
The present results highlight the stability of such mea-
sures. As noted above, the shift in distributions for clear
targets as a function of prime relatedness and the
increase in the priming effect across the distribution
for degraded targets is a very consistent pattern in the
present results. Moreover, as noted in the Introduction
(see Fig. 5), the available literature also seems quite con-
sistent regarding the influence of word frequency, lexi-
cality, and degradation across experiments, both
within and across laboratories. Indeed, there are now
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replicable tradeoffs in the ex-Gaussian parameters that
mask an effect in means in both Stroop performance
(e.g., Heathcote et al., 1991; Spieler et al., 1996), and
in visual word recognition (see Yap, Balota, Tse, & Bes-
ner, in press).

Another question regarding stability concerns how
well distributional effects generalize to new sets of stim-
uli. This would appear to be a more fundamental ques-
tion, because inherent item differences would place items
at different points within the RT distribution. For exam-
ple, consider the word frequency effect. One typically
finds an increase in the word frequency effect across
the RT distribution, with disproportionate effects at
the tail of the distribution in the LDT (see Andrews &
Heathcote, 2001; Balota & Spieler, 1999; Yap & Balota,
2007). However, one may be concerned that these distri-
butional changes may reflect the range of frequencies
within the high-frequency and low-frequency words
selected for comparisons. Specifically, because there is
a systematic relationship between log frequency and
response latency in the LDT, when one manipulates
word frequency, one might change the nature of the
influence of word frequency on the RT distributions
by explicitly manipulating the frequency ranges within
the band of high- and low-frequency words. So, when
considering RT distributions, it is important to be cau-
tious about the ability to replicate across different stim-
ulus sets. With respect to some variables, such as
lexicality and word frequency, the effects appear to be
quite stable across different stimulus sets.

In the present study, although we have sampled from
the same large set of prime-target trials across experi-
ments, because of counterbalancing procedures, differ-
ent subsets of items were selected across participants
and experiments, and yet they produced similar patterns
of results. Although this does not eliminate the problem
of item selection influences on the RT distributions, it
does minimize it. Such item influences on RT distribu-
tions are further minimized in other domains of research
such as attentional selection work (e.g., Stroop perfor-
mance), wherein a relatively small set of stimuli is
repeated across trials.

In RT distributional analyses, one also needs to con-
sider how practice and fatigue effects may modulate the
mixture of components in the distributions across time
(see Cousineau, Brown, & Heathcote, 2004, for a discus-
sion). For example, the RTs in the slow tail of the RT
distribution may reflect earlier trials, where participants
have not yet fully adapted to the task requirements. The
RTs in the faster bins may be more reflective of trials
after participants have adapted to the tasks. This is
indeed an important issue that also needs to be explored
with larger datasets.

So, what is the stability of the RT distributional esti-
mates across trials? We have recently explored this ques-
tion in a large data set in which each subject produced

responses to over 2400 monosyllabic words (see Balota,
Cortese, Sergent-Marshall, Spieler, & Yap, 2004). We
separated the data into two halves of lexical decision
and pronunciation data, most of which were collected
on separate testing sessions between one day and one
week apart. We then computed partial correlations
between the parameter estimates taken from the two
halves. Importantly, we partialed out overall mean
response latency for each participant to insure that such
relationships were not simply a reflection of general
slowing (i.e., a relationship between overall mean perfor-
mance and standard deviations, see Faust, Balota, Spie-
ler, & Ferraro, 1999). The correlations of the parameter
estimates were surprisingly high, supporting the stability
of these estimates. Specifically, the partial correlations
between the testing sessions for u, ¢, and 7 for lexical
decision were .98, .83, and .98, and in pronunciation
were .60, .61, and .91, respectively. The relatively smaller
correlations in pronunciation may be due to two factors.
First, the RT distribution for pronunciation perfor-
mance is more Gaussian, and hence, by partialing out
overall RT, one is simply partialing out the natural rela-
tionship between means and SDs, reflected in large part
by differences in 1 and . Second, it is possible that the
decrease in correlation is due to the large idiosyncratic
influence of voice onsets (over 30% of the variance in
these data) that are likely to vary across different sets
of stimuli across the two sessions.

Finally, regarding the stability of RT distributional
estimates, it is also interesting to note that Schmiedek,
Oberauer, Wilhelm, Sifl, and Wittmann (2007) have
recently found common latent factors related to the
three ex-Gaussian parameters in a set of RT tasks.
Importantly, Schmiedek et al. found z (along with a
measure of drift rate in the diffusion model) was the
strongest predictor of working memory, reasoning, and
psychometric speed. It is indeed quite interesting that
the t parameter can be used as a reliable individual dif-
ference marker that is related to control measures, fur-
ther supporting its potential utility as a useful
descriptive measure.

Why (or why not) the ex-Gaussian?

As noted in the Introduction, there are many formal
models of RT distributions that have been used to cap-
ture the characteristics of empirical RT distributions,
including the Weibull, ex-Gaussian, Gamma, Poisson
Race, Wald, and ex-Wald models (see Luce, 1986; Van
Zandt, 2002, for excellent reviews). In large part, we
have chosen to fit our empirical results to the ex-Gauss-
ian model in order to make direct connections with the
mean-dominated extant literature, since the sum of
two of the three parameters approximates the mean of
the distribution. We believe that this is a useful interme-
diate step for making connections with available litera-
ture, where factorial designs and ANOVAs on means
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are the typical levels of analyses. However, there are
clearly alternative models that may be preferable in
some cases. For example, the Weibull function nicely
affords estimates of location, scale, and shape of the
RT distribution, and some have argued (e.g., Rouder,
Tuerlinckx, Speckman, Lu, & Gomez, submitted for
publication) that this is a more appropriate function
for capturing how variables change an empirical
distribution.

Ultimately, the best approach may be to use a model
that more directly maps onto models of response
latency. For example, Schwarz (2001) has argued that
the ex-Wald (which is the convolution of an exponential
and a Wald distribution) may have this advantage. For
example, Schwarz argues that there is good evidence for
an additive exponential RT component of RT distribu-
tions (reflecting the “ex”), and that the Wald distribu-
tion is useful because it maps onto a diffusion process
to reach a fixed criterion, reflected by two parameters
of the Wald. Hence, instead of simply being a descriptive
model of the RT distribution, the ex-Wald makes con-
nections with a general process model of response
latency. Indeed Schwarz nicely demonstrates how the
model can be applied to a go/no-go RT study of mental
digit comparison, showing that numerical distance and
prior probability of a go response have isolated effects
on the parameters of the model. It will be particularly
useful in the future to (a) extend this approach to addi-
tional tasks with well-studied variables (e.g., word fre-
quency effects in lexical decision performance), and (b)
consider the implications of this approach for tasks that
do not include a single or binary response criterion, such
as speeded pronunciation.

Although there are many models of RT distributions
available, Cousineau et al. (2004) have recently argued
that there is no consensus regarding which model one
should choose. However, Cousineau et al. also point
out that there are some guiding principles for consider-
ing an appropriate model for distributional analyses.
First, one should consider the informative utility across
conditions as an important metric. Do the parameters
from a model capture the manipulations in a useful
manner? It is unclear if a model of RT distributions is
providing any new information if all parameters are con-
sistently changing across manipulations. The clear disso-
ciation observed in the present study between semantic
priming effects in clear and degraded conditions pro-
vides a nice example of specificity in the parameters. Sec-
ond, of course, the model should be parsimonious in the
number of parameters that are used to describe the RT
distribution. The relatively simple three-parameter ex-
Gaussian would appear efficient by this measure (see
Myung, 2000, for comparing models with varying num-
ber of parameters). Ultimately, we agree that it is most
useful to map the characteristics of empirical distribu-
tions onto a specific model of response latencies within

a given task. However, it may indeed be the case that
there will be no general model of response latencies,
and that models will need to specifically capture charac-
teristics within a given task. In this light, we believe the
ex-Gaussian is a useful descriptive model that has suffi-
cient generality to make connections with predictions
from the available models (see, for example, Balota &
Spieler, 1999; Ratcliff, 1978). Finally, it is also important
to remember to provide converging evidence from Vin-
centile (or Quantile) analyses to provide direct links
between the fits from the model and the empirical
distributions.

Semantic priming

The present results indicate that when targets are
clearly presented, and participants have sufficient time
to process the prime, the influence of semantic priming
is primarily to shift the RT distribution. This pattern is
intriguing because it appears to suggest that the prime
information affords a headstart on target processing,
and is inconsistent with the effects of most other vari-
ables in the word recognition literature. Importantly,
such a simple shift would appear to be inconsistent
with simple models of how response latency should
change as a function of priming. Specifically, one might
expect that the distribution of priming effects should
reflect the convolution of two distributions, one which
reflects the difficulty of the target and a second which
reflects the differences across items in prime-target
associative strength. At the very least, the convolution
of two such distributions should reflect both a change
in means and in variances, but the current results
appear to primarily provide evidence for a change in
means, as if each of the words in the unrelated condi-
tion received a speedup of N ms by the presence of a
related prime. In general, shifts in RT distributions,
without changes in variance, are quite intriguing within
models of RT.

Of course, a simple headstart model is indeed consis-
tent with classic metaphorical models of lexical process-
ing and priming. For example, within Morton’s (1969)
classic logogen model, if the primes produced a constant
amount of pre-activation for the logogen, one might
expect a simple shift. The serial search model of Becker
(1980) would appear to predict such a shift, since the
prime would have the effect of restricting the search set
for the target. Also, if one extends the entry-opening
account of masked repetition priming (see Forster
et al., 2003) to semantic priming, one would also predict
a distributional shift, since the influence of the prime in
this model affords a headstart on target processing.
However, such a pattern does not seem to easily fall
from current computational models (e.g., the compound
cue model or the feature overlap model), wherein the
influence of the prime is on a diffusion process or on
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the settling rate. These models do not predict a simple
shift in the RT distribution, but an increase in the scale
of the RT distribution which would produce an increase
in the additional parameters. Of course, the advantage
of metaphorical headstart frameworks in accommodat-
ing the present shift results largely reflects the flexibility
of such descriptions, which are unencumbered by the
necessary machinery used to predict trial-by-trial
response latencies for a given task. Hence, until a
detailed implementation is available that can capture
the shape of RT distributions for specific tasks, one
needs to be cautious about accepting the headstart
account.

The influence of stimulus degradation is of particular
interest here. Specifically, when targets are degraded, the
influence of relatedness increases the priming effect on
the relatively fast RTs, and produces an increasing effect
across the RT distribution (see however, Brown & Bes-
ner, 2002, for evidence of additive effects of degradation
and masked priming in the LDT). One might argue here
that when targets are degraded, the RT distributions
better reflect the predictions from current computational
models, i.e., producing larger priming effects for the
items in the tail of the distribution. One way to consider
the implications of these results is that for highly fluent
lexical processors (i.e., Washington University students),
and under conditions of clear target presentation, there
is relatively little need to retrieve the prime information,
and so the priming effect may be reflective of a relatively
modular lexical processing system, thereby producing
the simple shift. When the target is degraded, however,
the system uses any available information available to
better resolve the target, and hence, one finds the
expected increase in effect size across Vincentiles. Conse-
quently, the more difficult items, i.e., those at the slowest
Vincentiles, will be associated with more reliance on the
prime information.

Another way of considering these results is within the
Plaut and Booth (2000) single-mechanism connectionist
account of semantic priming. Because this model
assumes a non-linear logistic activation function relating
input activation to behavioral output, different manipu-
lations may produce additive or interactive effects
depending on where the effects are located on the logistic
function. Within this framework, one would need to
argue that for highly skilled readers processing clear tar-
gets, one is in the relatively gradual portion of the logis-
tic function, whereas, when one degrades the target, one
moves to a steeper, more sensitive area of the activation
function, thereby producing larger priming effects for
the slower items. However, consider what happens were
we to assume that the clear targets are at the steep linear
portion of the activation function. In this case, one
might actually predict smaller priming effects for the
degraded targets (associated with lower input activa-
tion), which is of course not what is typically found.

Thus, although such a logistic activation function has
the potential flexibility to accommodate the present
results, it will be particularly important to make specific
predictions that are constrained by the variance in read-
ing skill, item difficulty and variability, size of the degra-
dation manipulation, and variability in associative
strength to accommodate distributional results (see Bes-
ner & Borowsky, 2006; Besner, Wartak, & Robidoux, in
press; Plaut & Booth, 2006, for a discussion of some
potential difficulties when such specific constraints are
assumed).

Masked priming

Turning to the results from the masked priming
experiments, there are some important implications.
Specifically, in both lexical decision and speeded pro-
nunciation, there were larger masked priming effects
when the target was degraded compared to when the tar-
get was presented in a clear fashion. This ran counter to
our expectation that the slower tail of the RT distribu-
tion under degraded conditions might reflect more of a
prime retrieval process when the prime was consciously
available. Of course, it is quite possible that the prime
masking procedure used in the present study was not
sufficiently powerful to minimize conscious processing
of the prime. Hence, one might argue that the results
simply reflect the standard priming by degradation inter-
action that is well established in the literature and is rep-
licated in the present Experiments 4 and 5. However, the
results from Experiment 6 are again informative here.
Specifically, there was no evidence of a priming effect
when the targets were presented in a clear fashion and
the primes were masked. Hence, the mask was indeed
sufficiently effective to eliminate any evidence for prim-
ing in this experiment. However, on trials when the tar-
get was degraded, the masked priming effect returned in
this experiment.

Why does target degradation increase priming
effects under conditions of highly masked semantic
primes? There is already some evidence in the litera-
ture that addresses this issue, albeit from a different
paradigm. Specifically, Whittlesea and Jacoby (1990),
using a three-event priming paradigm, found that the
speed to name a third target stimulus (e.g., GREEN)
was influenced more by a 60 ms repetition prime
(e.g., GREEN) if a 150ms interpolated word was
degraded (pLaNt), compared to when it was non-
degraded (e.g., PLANT). Whittlescea and Jacoby
argued that degrading the interpolated word increased
the emphasis on retrieving the first masked word,
thereby producing greater repetition priming for the
third word, the target. There was little direct evidence
in the Whittlesea and Jacoby study regarding how
strongly the primes were masked and so there may
have been some leakage of conscious processing of
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the primes. Moreover, it is unclear if the implications
from the three-prime mixture of repetition and seman-
tic priming would extend to the more standard prim-
ing paradigm. However, the interesting inference
from this study is that under masked prime condi-
tions, participants appear to rely more on prime infor-
mation when there is a degraded, compared to clear,
interpolated target.

More recently, the notion that participants rely on
episodic retrieval in masked priming situations has
been further advocated by Bodner and Masson (1997,
2001, 2003, 2004; Masson & Bodner 2003) in their
memory recruitment account. For example, in one
study, Bodner and Masson (2001) varied the propor-
tion of masked repetition primes in a LDT from .2
to .8. The relatedness proportion in the semantic prim-
ing domain has been typically viewed as reflecting con-
trolled processing (e.g., den Heyer et al., 1983).
However, Bodner and Masson found that one obtains
a relatedness proportion effect even when the primes
are highly masked. Bodner and Masson (2003) have
also extended the relatedness proportion effect to
masked semantic priming paradigms. They have argued
from these results that the cognitive system is sensitive
to the utility of the prime information across trials.
Because repetition or related primes help resolve the
targets, it is useful to retrieve the prime information.
In the .8 relatedness proportion condition, participants
are more likely to recruit the masked primes in helping
to identify the targets then in the .2 proportion condi-
tion because the payoff for such recruitment is higher.
As Bodner, Masson, and Richard (2006) have recently
argued, this would be quite consistent with Anderson
and Milson’s (1989) rational analysis of memory
account for semantic priming effects.

The present results did not include a relatedness
proportion manipulation. Rather, we increased the
utility of the prime information by degrading the tar-
get. Hence, like Whittlesea and Jacoby (1990), we
found that the influence of a masked prime increases
when the target is degraded. Importantly, the RT dis-
tributional analyses indicated that the increased reli-
ance on the masked prime was greatest for the more
difficult items in the tail of the RT distribution, pre-
cisely as one might expect. This is yet another example
of the useful converging evidence that distributional
analyses afford.

The present results also have implications for
threshold priming effects. In particular, these results
question the notion that there is an absolute threshold
that one must achieve to demonstrate unconscious
priming. Such a threshold is typically demonstrated
in some other task (e.g., forced choice prime identifi-
cation or presence/absence prime detection), and so
has been susceptible to a number of criticisms (see,
for example, Holender, 1986). The present results indi-

cate that at a level of masking in which there is no
influence of the prime for clear targets, there is a
strong influence of such primes for degraded targets.
This pattern suggests that the system is sensitive to
the utility of available information and flexibly recruits
such information depending on the task demands (see
Balota & Yap, 2006, for a recent discussion of a flex-
ible lexical processor).

Conclusions

There are three major conclusions from the present
results. First, when primes are clearly presented and
targets are clearly presented, the effect of semantically
related primes compared to unrelated primes is primar-
ily to shift the RT distribution, instead of shifting and
increasing the tail of the distribution, the pattern found
with the vast majority of other variables in the visual
word recognition domain. These priming effects were
viewed as most consistent with a simple headstart met-
aphor of prime-to-target processing. Second, when the
target is degraded, there is increased reliance on the
prime information and this reliance produces both a
shift and an increase in priming in the tail of the RT
distribution. This pattern suggests that individuals
increase their reliance on prime information when tar-
gets are degraded, particularly for the difficult items
in the tail of the distribution. Third, even under highly
masked prime conditions, degrading the target
increases reliance on prime information. This has been
viewed as being most consistent with an episodic retrie-
val account of masked priming.

Most importantly, the major goal of this paper was
to demonstrate and evaluate the utility of RT distribu-
tional analyses for better understanding the influence
of a standard manipulation in the psycholinguistic
domain, i.e., semantic priming. Although there are
clearly constraints in the interpretation of the influences
of variables on RT distributions, and how best to mea-
sure such effects, we believe the accumulating evidence in
the literature indicates that it is indeed time for research-
ers using chronometric methods to move beyond esti-
mates of central tendency and to increase the
magnification of their measurement tool.
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Appendix A
N Mrelated SErelaled Munrelated SEunrelaled Effect
El: Speeded pronunciation Short SOA 8 739 151 605 125 134
Long SOA 15 626 88 655 79 -29
E2: Lexical decision Short SOA 16 654 46 637 35 17
Long SOA 16 593 47 586 28 7
E3: LDT replication Short SOA 15 566 28 573 18 =7
E4: Speeded pronunciation Clear 4 898 212 534 69 364
Degraded 13 691 86 754 80 —63
ES: Lexical decision Clear 16 549 40 617 55 —68
Degraded 29 808 54 836 61 -28
E6: Masked priming pronunciation Clear 8 663 52 611 46 52
Degraded 23 863 89 859 103 4
E7: Masked priming lexical decision Clear 26 558 30 583 28 =25
Degraded 29 691 44 764 44 73"
* p <.10.
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