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Additive and Interactive Effects on Response Time Distributions in Visual
Word Recognition

Melvin J. Yap and David A. Balota

Washington University in St. Louis

Across 3 different word recognition tasks, distributional analyses were used to examine the joint effects
of stimulus quality and word frequency on underlying response time distributions. Consistent with the
extant literature, stimulus quality and word frequency produced additive effects in lexical decision, not
only in the means but also in the shape of the response time distributions, supporting an early
normalization process that is separate from processes influenced by word frequency. In contrast, speeded
pronunciation and semantic classification produced interactive influences of word frequency and stim-
ulus quality, which is a fundamental prediction from interactive activation models of lexical processing.
These findings suggest that stimulus normalization is specific to lexical decision and is driven by the

task’s emphasis on familiarity-based information.
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Beginning with Donders (1868/1969), a central goal of under-
standing human cognition has been to isolate constituent subpro-
cesses through the use of mental chronometry. As there were
problems with the insertion procedure Donders advocated, Stern-
berg (1969a) developed additive-factors logic in which one can
provide leverage on the manner in which stages of information
processing are organized. Specifically, one can use response time
(RT) data from factorial experiments to make inferences about the
modules associated with a mental process. For example, Sternberg
argued that in an experiment in which two variables are manipu-
lated, additive effects of both variables (i.e., main effects for both
variables and no interaction) suggest that the variables influence
separately modifiable processing stages. In contrast, interactive
effects are more consistent with the variables influencing at least
one stage in common.

In a classic application of additive-factors logic, stimulus quality
(intact vs. degraded) and set size (number of items in memory)
were manipulated in a memory search task, and these two factors
were found to be additive (Sternberg, 1967, 1969b). These additive
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effects were interpreted as being consistent with a stage model of
memory search, in which stimulus quality influences an early
encoding stage, and set size influences a subsequent serial com-
parison stage (see Figure 1). In contrast, factors that interact are
assumed to influence a common processing locus. For example,
Becker (1979) investigated the effects of word frequency (high vs.
low frequency) and semantic context (related vs. unrelated con-
text) on word recognition and reported that word frequency inter-
acts with semantic context. This suggests that word frequency and
semantic context influence a common stage.

Following this early classic work, demonstrations of clear ad-
ditivity have been observed across diverse studies (see Sternberg,
1998, for an extensive review; see also Roberts, 1987; Sanders,
1990), supporting the claim that additive effects reflect discrete
stages of processing and that different factors can selectively
influence these stages. Given that the notion of discrete stages
seems simplistic and architecturally implausible, it is perhaps
unsurprising that additive-factor logic has encountered some re-
sistance and skepticism (e.g., Broadbent, 1984, pp. 56-58; Gard-
ner, 1985, pp. 120-124; Luce, 1986, pp. 481-483; Townsend,
1984; Townsend & Ashby, 1983). Although separate stages imply
additivity, additivity may not necessarily imply stages.

There are two competing architectures that have been proposed
that produce approximate or exact additive effects in mean RT and
yet do not assume separate stages: the alternate-pathways model
(Roberts & Sternberg, 1993) and the cascade model (Ashby, 1982;
McClelland, 1979). In an alternate-pathways model with two path-
ways, pathway a is engaged on a certain proportion of trials, and
pathway b is engaged on the remaining trials; both pathways are
never used during the same trial. In a cascade model with multiple
processes, all processes are operating continuously, with the cur-
rent (partial) output of one process immediately available as an
input for the next process. Because the three competing models
(i.e., stage, alternate pathways, and cascade) make predictions that
are virtually indistinguishable at the level of mean RTs, Roberts
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Processing stages in memory search. Reprinted from “The Discovery of Processing Stages: Exten-

sions of Donders’ Method,” by S. Sternberg, 1969, Acta Psychologica, 30, p. 294. Copyright 1969 by
North-Holland Publishing. Reproduced with permission from Elsevier.

and Sternberg (1993) argued that the models can be better evalu-
ated at the level of RT variances and RT distributions. Hence, they
evaluated the predictions of the models across a wide range of
experiments (e.g., detection, identification, and classification).
Distributional analyses were carried out with quantile plots of
empirical cumulative distribution functions, and additivity was
evaluated with the different moments of the RT distribution (mean,
variance, skewness, kurtosis). The results of these analyses indi-
cated that the alternate-pathways model failed to successfully
simulate any data set. Interestingly, although the cascade model
was most successful under parameter settings in which it resem-
bled a stage model, it was rejected after it made incorrect predic-
tions about the relations among means and variances (Roberts &
Sternberg, 1993; Sternberg, 1998). Specifically, the distributions
produced by an instantiation of the cascade model had twice as
much variance as the empirical distributions. In the domain of
visual word recognition, the debate between stages and cascading
processes has recently been revisited by Borowsky and Besner
(2006), who argued that extant empirical findings are accounted
more successfully by a stage model of lexical decision perfor-
mance than a cascaded single-mechanism connectionist model (but
see Plaut & Booth, 2006, for a reply).

Additive-Factors Logic and Stage Models
of Visual Word Recognition

A central goal in visual word recognition research is to deter-
mine the extent to which visual word recognition involves discrete,
sequentially organized modules or simply reflects a highly inter-
active system that has no independent stages. As one might guess,
additive-factors logic has contributed to this endeavor in important
ways. For example, the effects of stimulus quality and word
frequency are robustly additive in lexical decision performance
(Balota & Abrams, 1995; Becker & Killion, 1977; Plourde &
Besner, 1997; Stanners, Jastrzembski, & Westbrook, 1975), which
is consistent with the idea that these two factors affect different
stages in visual word recognition. As discussed earlier, stimulus
quality may be influencing an earlier stimulus encoding stage
while word frequency may be influencing a later lexical retrieval
stage. This simple account is qualified by the finding that both
stimulus quality and word frequency also interact with context
(i.e., whether a target word, e.g., cat, is preceded by a semantically
related prime, e.g., dog, or unrelated prime, e.g., moon). Specifi-
cally, context effects (faster latencies for targets primed by a
related word, compared with an unrelated word) are stronger for

degraded words, compared with intact words, as well as for low-
frequency words, compared with high-frequency words (see
Borowsky & Besner, 1993; Neely, 1991, for a review). If one uses
additive-factors logic, this implies that semantic priming has ef-
fects on both encoding (hence the interaction with stimulus qual-
ity) and retrieval processes (hence the interaction with word fre-
quency; see Figure 2; see Borowsky & Besner, 1993).

Effects of Stimulus Quality and Word Frequency:
Additive or Interactive?

Although the model depicted in Figure 2 is plausible, there is a
puzzling disjunction between the foregoing findings and current
computational models of visual word recognition. Empirically,
additive effects of stimulus quality and word frequency are gen-
erally obtained in lexical decision, a pattern that is consistent with
multistage models of word recognition (Borowsky & Besner,
1993; Forster, 1976; Paap, Newsome, McDonald, & Schvaneveldt,
1982). However, activation-class models, in which different vari-
ables influence a common word detector, are more difficult to
reconcile with additivity. Specifically, activation-class word rec-
ognition models (Morton, 1969), which assume that stimulus qual-
ity and word frequency jointly modulate the activation level of the
same word representations, predict interactive effects of the two
factors. The most straightforward prediction for such models is
that one should observe larger stimulus quality effects for word
representations with higher activation thresholds or resting activa-
tion levels (i.e., low-frequency words). Therefore, additivity seems
prima facie incompatible with influential computational
activation-class models such as the interactive activation model
(McClelland & Rumelhart, 1981) and, by extension, the compu-
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Figure 2. Stimulus quality, word frequency, and context effects in a
two-stage model of word recognition.
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tational dual route cascaded (DRC) model of word recognition
(Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001), which incor-
porates the interactive activation model. Indeed, simulations of the
computational DRC model confirm our intuitions; stimulus quality
and word frequency interacted in pronunciation performance, with
larger stimulus quality effects for low-frequency words (Reynolds
& Besner, 2004). The connectionist framework of lexical process-
ing (Plaut, McClelland, Seidenberg, & Patterson, 1996), an impor-
tant alternative to the dual route approach, also appears to predict
an interaction between degradation and word frequency. Specifi-
cally, D. C. Plaut (personal communication, January 18, 2005),
using the attractor network model described in Simulation 3 of
Plaut et al.’s (1996) article, demonstrated that word frequency
effects in pronunciation were larger for degraded items than for
nondegraded items. Therefore, it appears that well-studied com-
putational models of word recognition predict interactive effects of
stimulus quality and word frequency, a finding that is markedly
inconsistent with the empirical observation of additivity.

Task-Specific Operations in Lexical Decision

One way to resolve the incompatibility between the empirical
observations of additive effects of frequency and degradation and
the theoretical prediction of an interaction is to posit that additive
effects may not faithfully reflect the underlying architecture of the
word recognition system but may instead reflect task-specific
operations. For example, Balota and Chumbley (1984) compared
the size of the frequency effect across lexical decision, pronunci-
ation, and category classification. In the pronunciation task, par-
ticipants are asked to pronounce visually presented words. In
category classification, a category name (e.g., bird) is first pre-
sented, followed shortly by another word that is either an exemplar
(e.g., robin) or nonexemplar (e.g., cow) of that category; partici-
pants decide whether the presented word is an exemplar. Balota
and Chumbley found that frequency effects are task modulated,
with larger frequency effects in lexical decision than in other tasks
(see also Balota & Spieler, 1999). Hence, they argued that in
lexical decision, the frequency effect appears to tap both word
identification processes and the word—-nonword discrimination
process that is specific to that task. Just as the frequency effect is
exaggerated by the discrimination component of the lexical deci-
sion task (LDT), additive effects may also be driven by lexical
decision’s emphasis on familiarity-based information (Balota &
Chumbley, 1984; see also Besner, 1983). Familiarity-based infor-
mation, in this context, refers to a multidimensional quantity that
reflects the orthographic and phonological similarity of a letter
string to real words. Specifically, because visual degradation un-
dermines familiarity-based information in the stimuli, degraded
stimuli may have to undergo perceptual normalization in an addi-
tional early encoding stage. Normalization thus allows familiarity-
based information to be recovered and then used to discriminate
between familiar words and unfamiliar nonwords. If this line of
reasoning is correct, then additive effects should not be observed
in lexical processing tasks that do not emphasize familiarity-based
information, such as pronunciation or semantic classification.

On the other hand, if the encoding stage implicated by additive
effects is indeed a general characteristic of the lexical processing
architecture, then it should not be task dependent, and additive
effects of stimulus quality and word frequency should be observ-

able across reading tasks. Interestingly, nearly all the studies that
have reported additive effects (Becker & Killion, 1977; Plourde &
Besner, 1997, Stanners et al., 1975) have used the LDT, and two
studies that used the speeded pronunciation task provide at best
equivocal support for additive effects. For example, Besner and
McCann (1987) found that case alternation (e.g., dOg) slowed
pronunciation more for low-frequency words than for high-
frequency words. Herdman, Chernecki, and Norris (1999) indeed
reported additive effects of stimulus intensity and word frequency
in pronunciation. Although the interaction between degradation
and word frequency was not reliable in Herdman et al.’s data, it is
noteworthy that the word frequency effect was 53 ms for degraded
words and only 37 ms for nondegraded words. As far as we know,
the joint effects of stimulus quality and word frequency have not
been investigated in semantic classification.

At this point, it is worth noting the intriguing parallels between
lexical decision and memory search. First, both tasks are binary
decision tasks that could be viewed as reflecting the presence or
absence of a probe stimulus in memory. Second, as described
earlier, stimulus quality has additive effects with set size in mem-
ory search and with word frequency in lexical decision. In both
tasks, these additive effects seem to implicate an early encoding
stage in which stimuli are normalized and a later stage in which a
comparison or retrieval process is taking place. In memory search,
the stimulus encoding stage processes or refines the representation
of the degraded stimulus sufficiently so that the serial comparison
process works equally efficiently for clear or degraded stimuli
(Sternberg, 1969b). In lexical decision, it is plausible that degraded
words undergo an analogous normalization procedure prior to
lexical retrieval processes, in effect allowing degraded words to be
matched to perceptually clear words. Third, Atkinson and Juola
(1974) have demonstrated that memory search performance can be
modeled by two processes, an initial (fast) familiarity-driven pro-
cess, and a subsequent (slow) search process. A variation of this
model, the two-stage model of lexical decision performance
(Balota & Chumbley, 1984; Balota & Spieler, 1999), has also been
successful in accounting for various lexical decision phenomena.
Finally, Abrams and Balota (1991) found that the word frequency
effect in the LDT and the set size effect for target-present trials in
the memory scanning task influence not only the onset of the
response but also the dynamics of the response after it is initiated.
Hence, the similarity between these two binary decision tasks is
indeed quite striking, and so it is at least possible that the LDT
brings online specific processes that are quite similar to those of
the memory scanning task, as opposed to being a reflection of the
general lexical processing system.

Objectives of This Study

Given that the additive effects of stimulus quality and word
frequency are important for constraining models of word recogni-
tion, it is important to establish whether these effects generalize
across different measures of reading or whether they are specific to
lexical decision. In this article, we have two different, interrelated
goals, one theoretical and one methodological. First, we investi-
gate the effects of these two factors across three common word
recognition tasks (lexical decision, speeded pronunciation, and
semantic classification) using a common stimulus degradation
manipulation. To the extent that additive effects are a general
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lexical phenomenon, additivity should be observed across the
tasks.

Second, the data are analyzed both at the level of mean RTs and
at the level of distributional characteristics. There is an increasing
consensus in the literature that analyzing mean RTs alone can be
inadequate and in some cases actually misleading (Andrews &
Heathcote, 2001; Balota & Spieler, 1999; Heathcote, Popiel, &
Mewhort, 1991; Plourde & Besner, 1997; Yap, Balota, Cortese, &
Watson, 2006), because such an analysis does not consider the
shape of the RT distribution. In their seminal article, Heathcote et
al. (1991) investigated Stroop color-naming performance using
both traditional mean and ex-Gaussian analyses. Ex-Gaussian
analyses characterize an RT distribution by assuming an explicit
function for the shape of the distribution. A convolution of the
normal (Gaussian) and exponential distributions, the ex-Gaussian
function contains three parameters: w, the mean of the normal
distribution; o2, the variance of the normal distribution; and T, a
reflection of the mean and standard deviation of the exponential
distribution. Not only does the ex-Gaussian function provide good
fits to empirical RT distributions (Luce, 1986), but also the alge-
braic sum of w and 7 is also approximately equal to the mean of the
overall distribution (. and T are exactly equal to the mean in the
theoretical ex-Gaussian model). This allows differences in means
to be partitioned into a component that is associated with distri-
butional shifting () and a component that is associated with
distributional skewing (t; see Table 1 for an example).

Examining mean RTs, Heathcote et al. (1991) observed no
difference between the congruent (RED displayed in red) and
baseline (XXX displayed in red) conditions. Although this might
suggest that congruency has no effect on color naming, the ex-
Gaussian analyses revealed that naming RTs in the congruent
condition were facilitated (faster than baseline) in . but inhibited
(slower than baseline) in 7. In this case, congruency shifted the RT
distribution leftwards while increasing its skew. These counter-
vailing effects cancelled each other out, spuriously producing null
effects in means (see Spieler, Balota, & Faust, 1996, for a repli-
cation of this pattern). In the analyses described in this article,
more of the information available in an RT distribution is ex-
ploited, allowing us to ascertain how a variable modulates the
shape, rather than just the mean, of a distribution. In particular,
distributional analyses are carried out with ex-Gaussian fitting and
a convergent nonparametric technique called vincentizing (de-

Table 1

scribed in the Results section of Experiment 1). As in the case of
the Stroop facilitation effect, it is possible that the theoretically
important additive effects of word frequency and degradation
obtained in means may actually reflect a different pattern once one
examines the underlying RT distributions.

Experiment 1

In Experiment 1, we manipulated stimulus quality and word
frequency in lexical decision and used distributional analyses to
better understand how these two factors influence the underlying
RT distributions. On the basis of the literature, we expected
additive effects in mean RTs, but we were less certain whether
similar patterns of additivity would be present in ex-Gaussian
parameters (., o, and 7) and higher order distributional character-
istics, such as the second (variance) and third (skewness) mo-
ments. The latter point is particularly important when one is using
additive-factors logic to make inferences about serially organized,
independent stages. As noted, Sternberg (1969b) has pointed out
that additivity in means merely supports the existence of succes-
sive functional stages. To more rigorously test whether the stages
are stochastically independent, additivity must also be demon-
strated for the distribution’s second and third moments (Andrews
& Heathcote, 2001). Interestingly, Plourde and Besner (1997) have
in fact manipulated stimulus quality and word frequency in the
LDT and also examined the distributional characteristics with an
ex-Gaussian analysis. These researchers found evidence of addi-
tive effects of these two factors both in means and in the p and 7
parameters. They argued that this provides additional evidence for
an early and independent normalization stage.

Plourde and Besner’s (1997) study is theoretically informative
with respect to models of lexical decision performance as well as
more general models of word recognition; however, a few issues
remain unresolved. First, although additive effects of stimulus
quality and word frequency are typically observed in lexical de-
cision, some researchers (e.g., Norris, 1984; Wilding, 1988) have
obtained interactions, with stronger stimulus quality effects for
low-frequency words. This empirical inconsistency, coupled with
the fact that Plourde and Besner’s (1997) study is the only pub-
lished report exploring these effects with distributional analyses,
makes it important to generalize their findings with a different set
of stimuli and a different degradation manipulation. Establishing

Means of Participants’ Lexical Decision Response Time Means, Accuracy, and Ex-Gaussian
Parameter Estimates as a Function of Stimulus Quality and Word Frequency (Experiment 1)

Stimulus quality/word frequency M % of errors n o T
Clear words

High-frequency words 570 24 (2.1) 456 37 114

Low-frequency words 620 8.0 (6.1) 493 47 127

Frequency effect 50 5.6 (4.0) 37 10 13
Mask-degraded words

High-frequency words 709 7.53.7) 527 40 182

Low-frequency words 765 12.2 (6.6) 561 55 203

Frequency effect 56 4.7 (2.9) 34 15 21
Difference of difference (interaction) 6 =09 (—1.1) -3 5 8

Note. Means are given in milliseconds. Standard deviations are in parentheses.
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clear additive effects in Experiment 1 also provides confidence
that the degradation manipulation used is not methodologically
dissimilar to the manipulations adopted in the other reported
studies. Second, in Plourde and Besner’s study, stimulus quality
was manipulated within participants, which may have encouraged
a normalization procedure. Specifically, the random intermixing of
clear and degraded stimuli should make stimulus quality across
trials unpredictable, and this might engage a strategy in which
degraded stimuli were normalized to match perceptually clear
stimuli. It is unclear whether this effect generalizes to a between-
participants design. In this case, the normalization process may
become optional, because degraded and clear stimuli are no longer
presented within the same context; that is, participants in the
degraded condition are not receiving clear words to which to
normalize. (We included both a between-participants, Experiment
1, and a within-participants, Experiment 3, manipulation in the
present study.) Finally, as pointed out earlier, we can garner
stronger evidence for independent stages if additivity can be dem-
onstrated in the higher moments’ (i.e., variance and skewness);
these analyses are also reported in the present experiment.

Method
Participants

A total of 79 young adults (mean age = 19.1 years, SD = 1.09)
participated in this study for course credit. All participants had
normal or corrected-to-normal vision and were recruited from the
undergraduate student population of Washington University in St.
Louis. The participants had an average of 13.1 years of education
(SD = 0.91) and a mean vocabulary age of 18.4 (SD = 0.85) on
the Shipley (1940) vocabulary subtest. Using the following pro-
cedure, we discarded data from 7 of the 79 participants because of
excessively high error rates and/or slow latencies: Each partici-
pant’s response latencies and error rates were quantified as a
vector of four scores (mean RTs for high- and low-frequency
words; error rates for high- and low-frequency words), and the
Mahalanobis D? (Lattin, Carroll, & Green, 2003) was then com-
puted for each participant’s vector. The Mahalanobis D? reflects a
multivariate Z score and indicates how discrepant a vector is from
the centroid (multidimensional equivalent of the mean). Partici-
pants who had D? scores with unusually low probability values
(i.e., p < .05) were discarded. This approach is advantageous in
that it identifies multivariate outliers and does not rely on arbitrary
criteria defined with respect to a single variable.? In total, there
were 37 participants in the clear condition and 35 participants in
the degraded condition.

Apparatus

We used an IBM-compatible computer running E-prime soft-
ware (Schneider, Eschman, & Zuccolotto, 2001) to control stim-
ulus presentation and to collect data. The stimuli were displayed on
a 17-in. Super VGA monitor, and participants’ responses were
made on a computer keyboard.

Stimuli

The stimuli for the LDT consisted of 200 words and 200
length-matched pronounceable nonwords. Using the Lund and

Burgess (1996) frequency norms, we designated 100 words as high
frequency (mean counts per million = 1,227) and 100 words as
low frequency (mean counts per million = 44). We constructed
nonwords by changing one to three letters from each of the words.
For high-frequency words, the mean length was 4.73 letters (SD =
0.96), and on the basis of the values available from the English
Lexicon Project (http://elexicon.wustl.edu; see Balota et al., in
press), the mean orthographic neighborhood size (Coltheart, Dav-
elaar, Jonasson, & Besner, 1977) was 4.77, and the mean summed
bigram frequency was 6,369.86. For low-frequency words, the
mean length was 4.78 letters (SD = 0.85), the mean orthographic
neighborhood size was 4.82, and the mean summed bigram fre-
quency was 6,149.13. Orthographic neighborhood size refers to
the number of words that can be obtained by changing one letter
while preserving the identity and positions of the other letters (e.g.,
neighbors of CAT include MAT, COT, and CAN). Summed bigram
frequency refers to the sum of frequencies for the successive
bigrams in a word, where a bigram is defined as a sequence of two
letters (e.g., DO and OG for DOG). There was no significant
difference between high- and low-frequency words with respect to
length, #(198) = 0.39, p = .70; orthographic neighborhood size,
1(198) = —0.08, p = .94; and summed bigram frequency, #(198) =
0.42, p = .67. For the nonwords, the mean orthographic neigh-
borhood size was 3.38, and the mean summed bigram frequency
was 5,984.70.

Procedure

Before the experimental trials began, participants completed a
computer-administered Shipley vocabulary subtest. Participants
were tested individually in sound-attenuated cubicles. They were
seated about 60 cm from the computer screen. Participants were
told that letter strings would be presented at the center of the
screen and that their task was to indicate as quickly and as
accurately as possible via a button press on the keyboard whether
the letter string was a word or nonword. Participants were pre-
sented with 20 practice trials, followed by five experimental blocks
of 80 trials, with mandatory breaks occurring between blocks. The
order in which stimuli were presented was randomized anew for
each participant. The presentation sequence was similar for both
clear and visually degraded stimuli. For both conditions, stimuli
were presented in 14-point Courier font. For the masked degrada-
tion condition, letter strings were rapidly alternated with a ran-
domly generated mask of the same length. For example, the mask
& ?# was presented for 10 ms, followed by DOG for 25 ms, and the
two repeatedly alternated until the participant responded. The
mask was generated from random permutations of the symbols
@#$%& ?*, with the proviso that the mask be the same length as
the string and that symbols not be repeated within a mask. Each
trial consisted of the following order of events: (a) a fixation point
(+) at the center of the monitor for 400 ms, (b) a blank screen for

! Plourde and Besner (1997) examined additivity in variance but not in
skewness.

2 To determine whether participant and RT screening procedures were
influencing the results, we reanalyzed the data from the four experiments,
using all participants and less conservative screening criteria (i.e., remov-
ing only latencies faster than 200 ms and slower than 3,000 ms). The
pattern of results did not change across the four experiments.
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200 ms, and (c) a stimulus centered at the fixation point’s location.
The stimulus remained on the screen until a keyboard response
was made. Participants pressed the apostrophe key for words and
the A key for nonwords. Correct responses were followed by a
1,600-ms delay. If a response was incorrect, a 170-ms tone was
presented simultaneously with the onset of a 450-ms presentation
of the word Incorrect (displayed slightly below the fixation point).
In order to keep the response to stimulus interval constant across
correct and incorrect trials, the incorrect responses were followed
by a 1,150-ms delay.

Design

A 2 X 2 factorial design was used, with stimulus quality (clear
vs. mask degradation) manipulated between participants and word
frequency (high vs. low) manipulated within participants.

Results

Errors (7.2% across both the degraded and clear conditions) and
response latencies faster than 200 ms or slower than 3,000 ms were
first excluded, and the overall mean and standard deviation of each
participant’s word and nonword latencies were then computed on
the remaining latencies. Of the remaining latencies, any latencies
2.5 standard deviations above or below each participant’s respec-
tive mean (across all conditions) were removed. These criteria
eliminated a further 2.2% of the lexical decision responses. Anal-
yses of variance (ANOVAs) were then carried out on the mean,
accuracy, and ex-Gaussian parameters of the RT data. These data
are displayed in Table 1. For means and accuracy, ANOVAs by
participants and items were conducted.

Stimulus Quality and Word Frequency

Mean response latencies and accuracy. The ANOVA on mean
response latencies yielded significant main effects of stimulus
quality, F (1, 70) = 30.65, p < .001, MSE = 23,693.58, n = .31;
F(1,198) = 1,266.26, p < .001, MSE = 1,721.56, * = .87, and
word frequency, F(1, 70) = 201.77, p < .001, MSE = 493.94,
Mm% = .74; F(1, 198) = 63.81, p < .001, MSE = 5,339.21, 3> =
.24. The Stimulus Quality X Word Frequency interaction did not
approach significance (F,, and F; < 1). Turning to accuracy, the
main effects of stimulus quality, Fp(l, 70) = 22.96, p < .001,
MSE = 0.0034, > = 25; Fi(1, 198) = 44.75, p < .001, MSE =
0.0033, 1]2 = .18, and word frequency, F(1, 70) = 6192, p <
001, MSE = 0.0015, n* = 47; F(1, 198) = 26.35, p < .001,
MSE = 0.013, n? = .12, were again significant. The interaction
between stimulus quality and word frequency was not significant
by participants (p = .46) but did reach significance by items, F(1,
198) = 4.98, p = .027, MSE = 0.0033, > = .03. The simple main
effect of frequency (high-frequency words more accurate than
low-frequency words) was slightly larger in the clear condition
(d = .94) than in the degraded condition (d = .46). Hence, if
anything, this pattern runs counter to the expected greater word
frequency effect in the degraded compared with the clear condi-
tion. More crucially, the multiple potential sources of lexical
decision error (see Balota & Spieler, 1999), and the fact that the
interaction was not reliable by participants, makes it difficult to
interpret this interaction in a principled manner.

Ex-Gaussian analyses. Ex-Gaussian parameters (., o, T) were
obtained for each participant by use of continuous maximum-
likelihood estimation in the R statistics software (R Development
Core Team, 2004). Continuous maximum-likelihood estimation
provides efficient and unbiased parameter estimates (Van Zandt,
2000) using all the available raw data (see Heathcote, Brown, &
Mewhort, 2002, for an alternative approach). Through use of
Nelder and Mead’s (1965) simplex algorithm, negative log-
likelihood functions were minimized in the R statistics package
(cf., Speckman & Rouder, 2004), with all fits successfully con-
verging within 500 iterations.

Turning to the ex-Gaussian parameters, for ., the main effects
of stimulus quality, (1, 70) = 31.79, p < .001, MSE = 5,576.03,
n2 = .31, and word frequency, F(1, 70) = 144.82, p < .001,
MSE = 313.53, n*> = .67, were significant. The Stimulus Qual-
ity X Word Frequency interaction was not reliable (F < 1).
Turning to o, the main effects of stimulus quality, F(1, 70) = 4.24,
p = .043, MSE = 330.50, nz = .057, and word frequency, F(1,
70) = 34.32, p < .001, MSE = 165.43, n2 = .33, were significant.
The Stimulus Quality X Word Frequency interaction was not
reliable (p = .27). Turning to 7, the main effects of stimulus
quality, F(1, 70) = 17.36, p < .001, MSE = 10,623.69, n* = .20,
and word frequency, F(1, 70) = 16.26, p < .001, MSE = 625.02,
M? = .19, were significant. The Stimulus Quality X Word Fre-
quency interaction was not reliable (F < 1). Hence, the ex-
Gaussian analysis is very clear; all parameters produced main
effects, but none of the parameters produced interactions.

Vincentile analyses. A converging procedure for investigating
the effects of variables on response latencies is to plot the mean
vincentiles for the data. Vincentizing is used to average RT dis-
tributions across a number of participants (Andrews & Heathcote,
2001; Rouder & Speckman, 2004; Vincent, 1912) to produce the
RT distribution for a typical participant. This approach does not
depend on prior distributional assumptions and examines the raw
data directly. To carry out vincentizing, one first computes a
predefined number of vincentiles for each participant, where a
vincentile is defined as the mean of observations between neigh-
boring percentiles. For example, to obtain 10 vincentiles, the RT
data for a participant are first sorted (from fastest to slowest
responses), and the first 10% of the data is then averaged, followed
by the second 10%, and so on. Individual vincentiles are then
averaged across participants. Plots of mean vincentiles are useful
for investigating how different variables influence different re-
gions of the RT distribution and provide a complementary per-
spective to ex-Gaussian analysis. For example, W effects are re-
flected in additive changes in the vincentiles along the y-axis, and
7 effects are reflected in the slowest (rightmost) vincentiles.

The mean vincentiles for the raw data are plotted in the top two
thirds of Figure 3, and in the bottom third, one can see more clearly
the word frequency effect for the clear and degraded conditions
across the vincentiles. As shown in the bottom third of the figure,
the frequency effect increases across vincentiles for both clear and
degraded conditions, with only a slight increase in the degraded
condition, which ultimately decreases at the last vincentile. As
described below, this slight nonsignificant increase in the fre-
quency effect for the degraded condition is dramatically different
from conditions in which there is clear evidence of interactive
effects.
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Higher moments (variance and skewness). As advocated by
Roberts and Sternberg (1993), we also computed estimates of
variance and skewness® for each condition (see Table 2) as a more
rigorous test of evidence for stochastically independent stages. The
results from the ANOVA on the variance estimate indicated that
there was a main effect of stimulus quality, F(1, 70) = 11.60, p =
001, MSE = 2,296,966,670, nz = .14, and the main effect of word
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Figure 3. Experiment | vincentile means of participants’ lexical decision
response times as a function of stimulus quality and word frequency. RT =
response time; HF = high frequency; LF = low frequency.

Table 2

Means of Participants’ Lexical Decision Response Time
Variance and Skewness as a Function of Stimulus Quality and
Word Frequency (Experiment 1)

Word frequency/stimulus quality Variance Skewness
Clear words
High-frequency words 18,395 5.46E+06
Low-frequency words 20,870 7.11E+06
Frequency effect 2,475 1.65E+06
Mask-degraded words
High-frequency words 45,335 2.21E+07
Low-frequency words 48,351 2.73E+07
Frequency effect 3,016 5.23E+06

frequency approached conventional levels of significance, F(1,
70) = 3.01, p = .087, MSE = 90,030,849, > = .041. The
Stimulus Quality X Word Frequency interaction again did not
approach significance (F < 1). Turning to skewness, the main
effect of stimulus quality was significant, F(1, 70) = 8.50, p =
005, MSE = 1.44 X 10'3, nz = .11, and the main effect of word
frequency approached significance, F(1, 70) = 3.90, p = .052,
MSE = 1.09 X 10", 4 = .053. The interaction was not signifi-
cant (F < 1). Hence, the higher moments analysis (see Table 2)
converged with the earlier results, suggesting that stimulus quality
and word frequency are indeed additive across means, ex-Gaussian
parameters, and the higher order moments. In addition to the above
analyses, we also investigated the Stimulus Quality X Lexicality
interaction (see mean response latencies in Table 3).

Stimulus Quality and Lexicality

Mean response latencies and accuracy. For mean response
latencies, the main effects of stimulus quality, F,(1, 70) = 36.80,
p <.001, MSE = 33,820.29, v* = .35; F,(1, 398) = 3,218.05,p <
001, MSE = 2,224.54, n* = .89, and lexicality, F(1, 70) =
182.53, p < .001, MSE = 2,262.53,m* = .72; Fi(1, 398) = 326.95,
p < .001, MSE = 6,807.93, n* = .45, were significant. In contrast
to the additive effects of frequency and degradation, the Stimulus
Quality X Lexicality interaction was highly reliable, F (1, 70) =
29.93, p < .001, MSE = 2,262.53, m* = .30; F;(1, 398) = 155.18,
p < .001, MSE = 2,224.54, n2 = .28; the lexicality effect (word
RT < nonword RT) was larger when stimulus quality was de-
graded. Turning to accuracy, the main effect of stimulus quality
was significant, Fp(l, 70) = 28.15, p < .001, MSE = 0.0027, n2 =
29; Fi(1, 398) = 128.05, p < .001, MSE = 0.0035, 0> = .24. The
main effect of lexicality was not significant by participants (p =
.30) or by items (F; < 1). The Stimulus Quality X Lexicality
interaction was not significant by participants (¥, < 1) but was
significant by items, F;(1, 398) = 4.25, p = .040, MSE = 0.0035,
n? = 011

Ex-Gaussian analyses. Turning to the ex-Gaussian parame-
ters, for p, the main effects of stimulus quality, F(1, 70) = 49.20,
p < .001, MSE = 6,900.51, 0> = .41, and lexicality, F(1, 70) =
273.72, p < .001, MSE = 930.08, nz = .80, were significant. The

3 The third cumulant was estimated by 27> (Andrews & Heathcote,
2001).
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Table 3

Means of Participants’ Lexical Decision Response Time Means, Accuracy, and Ex-Gaussian
Parameter Estimates as a Function of Stimulus Quality and Lexicality (Experiment 1)

Stimulus quality/lexicality M % of errors n o T

Clear

Words 594 523.7) 468 42 126

Nonwords 657 4.7(3.7) 526 49 132

Lexicality effect 63 —0.5(0.0) 58 7 6
Mask degraded

Words 736 9.9 (4.5) 539 47 198

Nonwords 887 9.2(5.3) 649 71 237

Lexicality effect 151 —0.7 (0.8) 110 24 39
Difference of difference (interaction) 88 —0.2 (0.8) 52 17 33

Note. Means are given in milliseconds. Standard deviations are in parentheses.

Stimulus Quality X Lexicality interaction was also significant,
F(1, 70) = 27.29, p < .001, MSE = 930.08, 0> = .28; the
lexicality effect was larger when stimulus quality was degraded.
Turning to o, the main effects of stimulus quality, F(1, 70) =
16.23, p < .001, MSE = 403.23, 7]2 = .19, and lexicality, F(1,
74) = 49.53, p < .001, MSE = 170.80, n2 = .41, were significant.
The Stimulus Quality X Lexicality interaction was again signifi-
cant, F(1, 70) = 13.84, p < .001, MSE = 170.80, 0> = .17; the
lexicality effect was larger when stimulus quality was degraded.
Turning to 7, the main effects of stimulus quality, F(1, 70) =
17.23, p < .001, MSE = 16,482.71, n2 = .20, and lexicality,
F(1,70) = 12.41, p = .001, MSE = 1,537.27, n* = .15, were
significant. The Stimulus Quality X Lexicality interaction was also
significant, F(1, 70) = 6.63, p = .012, MSE = 1,537.27, T]2 =
.087; the lexicality effect was significant only in the degraded
condition.

Vincentile analyses. The mean vincentiles for these data are
plotted in the top two thirds of Figure 4, and the mean lexicality
effects for the clear and degraded conditions as a function of
vincentile are displayed in the bottom third. As clearly shown in
the bottom third, the lexicality effect is substantially larger for the
degraded condition compared with the clear condition, and this
effect increases quite dramatically across vincentiles. Comparing
the bottom thirds of Figures 3 and 4 clearly shows the difference
between additive and interactive effects of variables.

It should also be noted here that because there is already
evidence from the analyses of the means of an interaction between
stimulus quality and lexicality, there is no need to report the
analyses of the higher order moments.

Summary

Stimulus quality and lexicality showed clear interactive effects
in means and ex-Gaussian parameters, with larger lexicality effects
in the degraded condition across all the parameters (see Table 3).
This result is consistent with the literature (see Borowsky &
Besner, 1993; Stanners et al., 1975) and furthermore reveals that
the lexicality effect in the clear condition was mediated primarily
by w, whereas in the degraded condition, it was mediated by a
mixture of w and 7. “Nonword” lexical decision RTs were shifted
and skewed when visually degraded. The vincentile plot also
confirms that the lexicality effect for degraded items is larger than

for the clear items, and this trend increases across the entire RT
distribution.

Discussion

Experiment 1 replicates and extends Plourde and Besner’s
(1997) results, demonstrating that the additive effects of stimulus
quality and word frequency are robust, even when stimulus quality
is manipulated between participants. The general pattern of addi-
tivity across means, ex-Gaussian parameters, and the higher order
moments suggests that when words are processed in lexical deci-
sion, stimulus quality and word frequency are indeed influencing
separate and independent stages. In particular, the pattern of ad-
ditivity in the higher order moments is more consistent with a stage
model than a cascade model (see Roberts & Sternberg, 1993). The
most straightforward interpretation of these results is that during
lexical decision, each degraded word undergoes a normalization
process before engaging the processes tied to the decision process
in this task. This of course is quite similar to the account of the
additive effects of degradation and set size in memory scanning.
Although the data do not directly address what happens during
normalization, they suggest that models of lexical decision perfor-
mance (e.g., Balota & Spieler, 1999; Coltheart et al., 2001;
Grainger & Jacobs, 1996; Plaut, 1997; Ratcliff, Gomez, & Mc-
Koon, 2004; Seidenberg & McClelland, 1989) may need to incor-
porate a perceptual normalization procedure under degraded con-
ditions that precedes the normal lexical decision process.

Interestingly, although such a normalization process might also
suggest equivalent effects of degradation for words and nonwords,
this does not appear to be the case since there is a reliable
significant Stimulus Quality X Lexicality interaction (replicated in
Borowsky & Besner, 1993, and Stanners et al., 1975). Because
words and nonwords undergo a common normalization stage prior
to lexical decision, it is unclear why the stimulus quality effect
should be larger for nonwords (see Table 3). One possible account
of this pattern is that participants are simply more conservative
when they have to reject a degraded letter string as a nonword.
Such a conservative nonword response bias may reflect a relatively
late decision-level influence. In particular, because all degraded
letter strings, whether words or nonwords, initially look unfamil-
iar, participants may become particularly cautious before making a
nonword response. Because half of these degraded letter strings
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Figure 4. Experiment 1 vincentile means of participants’ lexical decision
response times as a function of stimulus quality and lexicality. RT =
response time; NWs = nonwords.

form words and are eventually resolved because of the normaliza-
tion process, participants may allocate more time for processing
the strange-looking letter strings to ensure that they are not actu-
ally words—that is, that they are indeed nonwords.
Mechanistically, it is relatively straightforward to incorporate
this conservative bias within both the activation and search met-
aphors of lexical access. For example, in activation-class models,

“nonword” responses are produced when lexical activity does not
reach threshold after some temporal deadline (Coltheart et al.,
2001). Degraded items might lengthen this nonword deadline,
which will of course exaggerate lexicality effects for degraded
items. Alternatively, in search models of lexical access (e.g.,
Murray & Forster, 2004), orthographic bins are searched exhaus-
tively, with “word” responses produced when the target word is
located, and “nonword” responses produced when the search is
unsuccessful. Presenting degraded nonwords may lead to multiple,
perseverative searches of the bin before a search is terminated,
leading to larger lexicality effects in the degraded condition (K. I.
Forster, personal communication, January 12, 2004). In either
case, this perspective suggests that participants become more con-
servative about responding ‘“nonword” when degraded letter
strings are presented. Of course, these accounts still demand em-
pirical validation. However, the robust Stimulus Quality X Lexi-
cality interaction, coupled with the robust additive effects of stim-
ulus quality and word frequency in lexical decision performance,
appear problematic for a simple model that attributes the effects of
word frequency and lexicality to a common mechanism in this
task.

Experiment 2

On the basis of the additive effects from Experiment 1 and
Plourde and Besner’s (1997) study, there does seem to be com-
pelling evidence for an early normalization stage that is insensitive
to word frequency. However, as argued in the introduction, it is
unclear whether this normalization stage reflects the cognitive
architecture of the word recognition system or is specific to the
task requirements of lexical decision. Again, because of the sim-
ilarity with the additive effects observed in memory scanning (a
nonlexical task), one might be concerned that task-specific oper-
ations are producing these effects. If normalization is a general
property of lexical processing, additive effects of stimulus quality
and word frequency should be observable in other word recogni-
tion tasks. Hence, the goal of Experiment 2 was to essentially
replicate the design of Experiment 1 with the dependent measure
being speeded pronunciation performance.

Method
Participants

A total of 88 young adults (mean age = 19.8 years, SD = 1.31)
participated in this study for course credit. All participants had
normal or corrected-to-normal vision and were recruited from the
undergraduate student population of Washington University in St.
Louis. The participants had an average of 13.3 years of education
(SD = 1.14) and a mean vocabulary age of 18.6 (SD = 0.88) on
the Shipley vocabulary subtest. Data from 10 of the 88 participants
were discarded because of excessively high error rates or slow
latencies, using the same multivariate outlier procedure described
in Experiment 1. This left 39 participants in each of the two
conditions.

Apparatus and Stimuli

An IBM-compatible computer was used to control stimulus
presentation and to collect responses. The stimuli were displayed
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on a 17-in. Super VGA monitor, and participants’ pronunciation
responses were detected by an Audio-Technica microphone
(Audio-Technica, Stow, OH) connected to a PST serial response
box (Psychology Software Tools, Inc., Pittsburgh, PA) with an
integrated voice key. The stimuli for the pronunciation task con-
sisted of the 200 words used in Experiment 1.

Procedure

Participants were told that words would be presented in the
center of the screen, and their task was to read aloud each word as
quickly and as accurately as possible. This was followed by 20
practice trials and four experimental blocks of 50 trials, with
mandatory breaks occurring between blocks. The order in which
stimuli were presented was randomized anew for each participant.
The presentation sequence was similar for both clear and visually
degraded stimuli. Each trial consisted of the following order of
events: (a) a fixation point (+) at the center of the monitor for 500
ms, (b) a blank screen for 750 ms, and (c) the stimulus at the
fixation point’s location. The stimulus word remained on the
screen until a pronunciation response was detected. Participants
then coded their responses by pressing the left mouse button for a
correct response and the right mouse button for an incorrect
response. Responses were followed by a 2,000-ms delay.

Design

A 2 X 2 factorial design was used: Stimulus quality was
manipulated between participants, and word frequency was ma-
nipulated within participants. The presentation format for the
mask-degradation condition was identical to the manipulation used
for Experiment 1.

Results

Errors (1.6% across the two stimulus quality conditions) and
extreme response latencies (faster than 200 ms or slower than
3,000 ms) were first excluded from the analyses, and the overall
mean and standard deviation of each participant’s word latencies
were computed on the remaining latencies. Response latencies 2.5
standard deviations above or below each participant’s respective
mean latency were removed. These criteria eliminated a further
2.4% of the pronunciation responses. ANOVAs were then carried
out on the mean, accuracy, and ex-Gaussian parameters of the RT
data (see Table 4).

Mean response latencies and accuracy. For means, the main
effects of stimulus quality, Fp(l, 76) = 13.91, p < .001, MSE =
23,622.18, m? = .16; Fy(1, 198) = 908.01, p < .001, MSE =
943.79, * = .82, and word frequency, F(1,76) = 68.53, p <
001, MSE = 440.37, n* = 47; F,(1, 198) = 23.10, p < .001,
MSE = 3,589.42, n2 = .10, were significant. More important, the
Stimulus Quality X Word Frequency interaction was significant,*
F,(1,76) = 9.19, p = .003, MSE = 440.37, n’ =.11;F(,198) =
11.40, p = .001, MSE = 943.79, 1> = .054, with a larger stimulus
quality effect for low-frequency words than for high-frequency
words. Turning to accuracy, the main effects of stimulus quality,
F(1,76) = 3.43, p = .07, MSE = 0.00063, n? = .043; F(1,
198) = 10.42, p = .001, MSE = 0.0013, * = .050, and word
frequency, Fp(l, 76) = 7.63, p = .007, MSE = 0.00018, n2 =

.091; Fi(1, 198) = 10.18, p = .002, MSE = 0.0028, 1> = .049,
were significant. The interaction between stimulus quality and
word frequency was not reliable by participants or items (Fs < 1).

Ex-Gaussian analyses. Turning to the ex-Gaussian parame-
ters, for w, only the main effect of word frequency was significant,
F(1,76) = 13.51, p < .001, MSE = 392.16, 1> = .15. Neither the
main effect of stimulus quality (p = .13) nor the interaction (F <
1) were significant. Likewise, for o, only the main effect of word
frequency was significant, F(1, 76) = 5.62, p = .020, MSE =
180.30, m? = .069. The main effect of stimulus quality and the
interaction were not significant. For 7, the main effects of stimulus
quality, F(1, 76) = 18.01, p < .001, MSE = 9,248.72, 3> = .19,
and word frequency, F(1, 76) = 12.20, p = .001, MSE = 835.24,
m? = .14, were significant. The Stimulus Quality X Word Fre-
quency interaction approached significance (p = .07), reflecting a
larger stimulus quality effect for low-frequency words than for
high-frequency words.

Vincentile analyses. The mean vincentiles for these data are
plotted in the top two thirds of Figure 5, and the frequency effect
for the clear and degraded conditions are displayed in the bottom
third of the figure. As most clearly shown in the bottom third, there
was a larger frequency effect in the degraded condition, primarily
at the slower vincentiles, which converges with the results from the
ex-Gaussian analyses. Again, comparing Figure 5 and Figure 2,
one can see a strong difference in the joint effects of stimulus
quality and word frequency in pronunciation and lexical decision
performance.

Discussion

In Experiment 1, using the LDT, we observed robust additive
effects of stimulus quality and word frequency. In Experiment 2,
through use of speeded pronunciation, the same stimuli and stim-
ulus quality manipulation produced a clear interaction between
stimulus quality and word frequency in mean RTs, with larger
stimulus quality effects for low-frequency words. One obvious
interpretation of these findings is that the additive effects of
stimulus quality and word frequency may not be task independent
but may instead reflect task operations that are specific to the LDT.
However, because of the importance of this interaction in pronun-
ciation performance, it is necessary to replicate and extend this
pattern.

Experiment 3

Although a significant interaction was obtained with mean RTs,
none of the parameters produced an interaction. Basically, the

+ Because the same stimuli were used for lexical decision (Experiment 1)
and speeded pronunciation (Experiments 2 and 3), the high- and low-
frequency words were not matched in advance on phonological factors
known to bias voice key RT measurement (see Kessler, Treiman, &
Mullennix, 2002). It was assumed that this would not be a problem because
the same items occur in both the clear and degraded conditions. However,
to address a reviewer’s concern that voice key effects may influence
sensitivity to interactions, we controlled for onset characteristics (using the
method described in Balota, Cortese, Sergent-Marshall, Spieler, & Yap,
2004) in the speeded pronunciation experiments before carrying out the
ANOVAs. After we controlled for phonological onset characteristics, the
Stimulus Quality X Word Frequency interaction was still significant in
both Experiments 2 and 3.
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Table 4

Means of Participants’ Speeded Pronunciation Response Time Means and Ex-Gaussian
Parameter Estimates as a Function of Word Frequency and Stimulus Quality (Experiment 2—

Between Participants)

Stimulus quality/word frequency M % of errors n o T
Clear words

High-frequency words 516 0.8 (1.3) 468 74 48

Low-frequency words 533 1.5(1.5) 478 79 56

Frequency effect 17 0.7 (0.2) 10 5 8
Mask-degraded words

High-frequency words 597 1.7 (2.0) 493 69 105

Low-frequency words 635 2.2(2.8) 506 74 129

Frequency effect 38 0.5(0.8) 13 5 24
Difference of difference (interaction) 21 —0.2 (0.6) 3 0 16

Note. Means are given in milliseconds. Standard deviations are in parentheses.

interaction was exhibited to some extent in both p and 7. Because
of the theoretical importance of this interaction, it is necessary to
both replicate this pattern of results with an independent sample
and to increase the power of the design. Hence, Experiment 3 is
essentially a replication of Experiment 2, with both stimulus qual-
ity and word frequency manipulated within participants, which
should increase power.

Method
Participants

A total of 48 young adults (mean age = 21.3 years, SD = 3.40)
participated in this study for course credit. All participants had
normal or corrected-to-normal vision and were recruited from the
undergraduate student population of Washington University in St.
Louis. The participants had an average of 14.3 years of education
(SD = 1.19) and a mean vocabulary age of 18.6 (SD = 1.03) on
the Shipley vocabulary subtest. Data from 3 of the 48 participants
were discarded because of excessively high error rates or slow
latencies, using the same multivariate outlier procedure described
in Experiment 1, leaving 45 participants. The apparatus, stimuli,
and procedure were the same as those used in Experiment 2.

Design

A 2 X 2 factorial design was used: Both stimulus quality and
word frequency were manipulated within participants. The original
200 stimuli were divided into two sets of 100 words (Set A and Set
B), with each set containing 50 high- and 50 low-frequency words;
the two sets were matched on length and word frequency.’

Results

Errors (1.8%) and extreme response latencies (faster than 200
ms or slower than 3,000 ms) were first excluded from the analyses,
and the overall mean and standard deviation of each participant’s
word latencies were then computed on the remaining latencies.
Response latencies 2.5 standard deviations above or below each
participant’s respective mean latency were removed. These criteria
eliminated a further 2.6% of the pronunciation responses.
ANOVAs were then carried out on the mean, accuracy, and the
ex-Gaussian parameters of the RT data (see Table 5).

Mean response latencies and accuracy. For means, the main
effect of stimulus quality, F(1, 44) = 78.79, p < .001, MSE =
3,910.68, 0> = .64; Fy(1, 198) = 185.86, p < .001, MSE =
3,773.73,m> = .48, and word frequency, F,(1, 44) = 47.54, p <
001, MSE = 599.08, n* =.52; F(1, 198) = 15.00, p < .001,
MSE = 4,305.12, * = .07, were significant by participants and
items. More crucially, the Stimulus Quality X Word Frequency
interaction was highly reliable by both participants and items,
F (1, 44) = 24.04, p < .001, MSE = 547.05, n? = .35; F(l,
198) = 8.00, p = .005, MSE = 3,773.73, 1> = .039, with a larger
stimulus quality effect for low-frequency words than for high-
frequency words. Turning to accuracy, the main effect of stimulus
quality was significant, F(1, 44) = 10.39, p = .002, MSE =
0.00099, n* = .19; F(1, 198) = 4.07, p = .045, MSE = 0.0029,
m? = .02, whereas the main effect of word frequency was not
significant by participants (F,, < 1) but was significant by items,
F(1, 198) = 3.95, p = .048, MSE = 0.0030, n* = .020. The
interaction between stimulus quality and word frequency was not
significant by participants or items.

Ex-Gaussian analyses. Turning to the ex-Gaussian parame-
ters, for w, both the main effects of stimulus quality, F(1, 44) =
56.26, p < .001, MSE = 1,043.86, nz = .56, and word frequency,
F(1, 44) = 11.87, p = .001, MSE = 1,180.91, n* = .21, were
significant. The interaction approached but did not reach signifi-
cance (p = .14). Likewise, for o, both the main effects of stimulus
quality, F(1,44) = 12.07, p = .001, MSE = 725.50, 1]2 = 22, and
word frequency, F(1, 44) = 5.36, p = .025, MSE = 531.79, T]2 =
.11, were significant. The interaction was not significant (F < 1).
Turning to T, the main effect of stimulus quality was significant,
F(1, 44) = 19.66, p < .001, MSE = 4,982.45, v*> = .31. Neither
the main effect of word frequency nor the Stimulus Quality X
Word Frequency interaction was significant (ps > .10). It is
noteworthy that in the within-participants degradation manipula-
tion, there is no influence of word frequency on the T component

3 For the original 48 participants, half the participants saw Set A words
clearly and Set B words with degradation (Order 1), and the other half of
the participants saw Set B words clearly and Set A words with degradation
(Order 2). The elimination of 3 participants resulted in 22 participants for
the Order 1 condition and 23 participants for the Order 2 condition. The
order variable did not interact with any of the experimental variables.
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Figure 5. Experiment 2 vincentile means of participants’ pronunciation
response times as a function of stimulus quality and word frequency
(between participants). RT = response time; HF = high frequency; LF =
low frequency.

for the clear condition, replicating the pattern observed by Balota
and Spieler (1999).

Vincentile analyses. The mean vincentiles for these data are
plotted in the top two thirds of Figure 6, and the frequency effects
for the clear and degraded conditions are plotted in the bottom
third. As shown in the bottom third, the frequency effect for the

degraded condition is considerably larger than that for the clear
condition, and this trend appears to increase somewhat at the last
vincentiles. The similarity between the bottom thirds of Figures 5
and 6 is quite striking.

Summary. Stimulus quality and word frequency produced in-
teractive effects in means, with a larger stimulus quality effect for
low-frequency words. Partitioning this interaction (see Table 5)
suggested that the interaction was being mediated by both the
and T parameters; the interaction effect in means (35 ms) is
attributable to both the w (17 ms) and the T component (18 ms).
Coupled with the results in Experiment 2, this suggests that the
interaction between stimulus quality and word frequency in pro-
nunciation is due to the disproportionate shifting and skewing of
visually degraded low-frequency words (although this must be
qualified by the nonsignificant interaction in both . and 7). This is
further highlighted by the vincentile plot; the frequency effect is
consistently larger for the degraded words and increases across the
RT distribution.

Experiment 4

The results from the previous experiments provide an interesting
dissociation between the effects of stimulus quality and frequency
and reading task. Specifically, additive effects are obtained with
lexical decision, whereas interactive effects are obtained with
speeded pronunciation. In Experiment 4, we investigated whether
interactive effects of degradation and frequency effects generalize
to semantic categorization, a task that taps both word identification
and meaning access processes (Forster & Shen, 1996). We have
proposed that lexical decision’s emphasis on familiarity is respon-
sible for the additive effects in that task. Another binary decision
task that does not allow decisions to be driven by familiarity
information, such as semantic categorization, should therefore not
produce additive effects. If we again observe interactive effects of
degradation and frequency in semantic categorization, this would
provide convergent support for the notion that the LDT is the
outlier task. On the other hand, obtaining additive effects with
semantic categorization would suggest that speeded pronunciation
engages task-specific operations that are responsible for the inter-
action.

In Experiment 4, participants judged the animacy (i.e., animate
or inanimate) of presented words; stimulus quality and word
frequency were manipulated within participants. It is noteworthy
that a number of researchers (e.g., Balota & Chumbley, 1984;
Forster & Shen, 1996; Sears, Lupker, & Hino, 1999) have argued
that data from nonexemplar trials are particularly useful in study-
ing word identification, because there is no priming from the
category on nonexemplar trials. In order to classify an item cor-
rectly, participants need to access its lexical entry and extract
sufficient semantic information to drive a response. In addition, as
recommended by Forster and Shen (1996), we used a single
category throughout the experiment, and we used a single large,
natural category to minimize postlexical identification processing
and typicality effects (Monsell, 1991).

Method
Participants

A total of 45 young adults (mean age = 19.6 years, SD = 1.3)
participated in this study for course credit. All participants had
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Table 5

Means of Participants’ Speeded Pronunciation Response Time Means and Ex-Gaussian
Parameter Estimates as a Function of Word Frequency and Stimulus Quality (Experiment 3—

Within Participant)

Stimulus quality/word frequency M % of errors n o T
Clear words

High-frequency words 578 09 (3.1) 502 68 76

Low-frequency words 586 1.2 (2.7) 511 76 75

Frequency effect 8 0.6 (—0.4) 9 8 -1
Mask-degraded words

High-frequency words 643 2.5(5.2) 530 82 113

Low-frequency words 686 2.6 (4.8) 556 90 130

Frequency effect 43 0.1 (—04) 26 8 17
Difference of difference (interaction) 35 —0.5(0.0) 17 0 18

Note. Means are given in milliseconds. Standard deviations are in parentheses.

normal or corrected-to-normal vision and were recruited from the
undergraduate student population of Washington University in St.
Louis. The participants had an average of 13.6 years of education
(8D = 1.3) and a mean vocabulary age of 18.7 (SD = 1.0) on the
Shipley vocabulary subtest. Data from 5 of the 45 participants
were discarded because of excessively high error rates or slow
latencies, assessed with the same multivariate outlier procedure
described in Experiment 1, leaving 40 participants.

Apparatus and Stimuli

The apparatus was the same as Experiment 1. The stimuli for
Experiment 4 consisted of 400 words, 200 animate words and 200
inanimate words extracted from Andrews and Heathcote’s (2001)
stimuli. Using the Lund and Burgess (1996) frequency norms, half
the words in each animacy set were designated as high frequency
(animate words mean counts per million = 115; inanimate words
mean counts per million = 140), and the other half were desig-
nated as low frequency (animate words mean counts per million =
13; inanimate words mean counts per million = 20). For high-
frequency words, the mean length was 6.20 letters for animate
words and 6.23 for inanimate words, the mean orthographic neigh-
borhood size was 1.82 for animate words and 1.83 for inanimate
words, and the mean summed bigram frequency was 10,920.86 for
animate words and 10,042.01 for inanimate words. For low-
frequency words, the mean length was 6.22 for animate words and
6.33 for inanimate words, the mean orthographic neighborhood
size was 1.69 for animate words and 1.73 for inanimate words, and
the mean summed bigram frequency was 9,291.81 for animate
words and 9,418.81 for inanimate words. There was no significant
difference between high- and low-frequency words with respect to
length or orthographic neighborhood size for both animate and
inanimate words (all s < 1).

Procedure

Participants were told that words would be presented at the
center of the screen, and their task was to indicate as quickly and
as accurately as possible via a button press on the keyboard (the
apostrophe key for living words and the A key for nonliving words,
or vice versa) whether the word was a living or nonliving object.
Participants were presented with 20 practice trials, followed by

five experimental blocks of 80 trials, with mandatory breaks oc-
curring between blocks. The order in which stimuli were presented
was randomized anew for each participant. Each trial consisted of
the following order of events: (a) a fixation point (+) at the center
of the monitor for 2,000 ms, (b) a blank screen for 650 ms, and (c)
a stimulus centered at the fixation point’s location. The stimulus
remained on screen until a keyboard response was made. Re-
sponses were followed by a 1,000-ms delay. If the response was
incorrect, at the onset of the 1,000-ms delay, there was a 170-ms
tone that was presented simultaneously with the word Incorrect
displayed for 450 ms slightly below the fixation point.

Design

A 2 X 2 factorial design was used: Both stimulus quality and
word frequency were manipulated within participants. The original
200 stimuli were divided into two sets of 100 words (Set A and Set
B), with each set containing 50 high- and 50 low-frequency words;
the two sets were matched on length and word frequency. Half the
participants saw Set A words clearly and Set B words with deg-
radation, whereas the other half saw Set B words clearly and Set
A words with degradation. In addition, the response keys used to
make “animate” and “inanimate” responses were counterbalanced
so that a particular key was used to indicate “animacy” for half the
participants and “inanimacy” for the remaining participants.

Results

Errors (5.8%) and extreme response latencies (faster than 200
ms or slower than 3,000 ms) were first excluded from the analyses,
and the overall mean and standard deviation of each participant’s
word latencies were then computed. Response latencies 2.5 stan-
dard deviations above or below each participant’s respective mean
latency were removed. These criteria eliminated a further 2.7% of
the classification responses. ANOVAs were then carried out on the
mean, accuracy, and ex-Gaussian parameters of the RT data (see
Tables 6 and 7). To simplify the presentation of the results, we
present the analyses for “inanimate” responses (see Table 6) first,
followed by analyses for “animate” responses (see Table 7).
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Figure 6. Experiment 3 vincentile means of participants’ pronunciation
response times as a function of stimulus quality and word frequency
(within participants). RT = response time; HF = high frequency, LF =
low frequency.

Stimulus Quality X Word Frequency (Inanimate)

Response latencies and accuracy. For means, the main effect
of stimulus quality, F(1, 39) = 55.08, p < .001, MSE = 7,309.59,
Mm% = .59; F,(1, 198) = 231.81, p < .001, MSE = 4,390.51, n* =
.54 and word frequency, Fp(l, 39) = 67.07, p < .001, MSE =

1,267.87, m* = .63; Fi(1, 198) = 22.81, p < .001, MSE =
9,512.07, n* = .10, were significant by participants and items.
More crucially, the Stimulus Quality X Word Frequency interac-
tion was reliable by participants and items, F (1, 39) = 6.15, p =
.018, MSE = 858.08, m* = .14; F,(1, 198) = 4.10, p = .04, MSE =
4390.51, n* = .02, with a larger stimulus quality effect for
low-frequency words than for high-frequency words. Turning to
accuracy, the main effect of word frequency, F(1,39) = 5.57,p =
.02, MSE = 0.0007, n* = .13; Fy(1, 198) = 3.13, p = .08, MSE =
0.013, n2 = .016, was significant. The main effect of stimulus
quality was not significant by participants (p = .32) but was
significant by items, F,(1, 198) = 5.32, p = .02, MSE = 0.003,
m? = .03. The Stimulus Quality X Word Frequency interaction
was not significant by participants (p = .18) or by items (p = .39).

Ex-Gaussian parameters. Turning to the ex-Gaussian param-
eters, for w, both the main effects of stimulus quality, F(1, 39) =
41.03, p < .001, MSE = 2,091.84, n2 = .51, and word frequency,
F(1, 39) = 10.85, p = .002, MSE = 3,413.46, n* = .22, were
significant. The interaction did not reach significance (F < 1). For
o, none of the effects were significant. Turning to T, the main
effect of stimulus quality was significant, F(1, 39) = 12.87, p =
.001, MSE = 9,240.65, n2 = .25. The main effect of word
frequency approached significance (p = .09), but the Stimulus
Quality X Word Frequency interaction was not significant (p =
27).

Vincentile analyses. The mean vincentiles for these data are
plotted in the top two thirds of Figure 7, and the mean frequency
effects for the clear and degraded conditions across vincentiles are
displayed in the bottom third of this figure. The data in the bottom
third of Figure 7 clearly show that the frequency effect for the
degraded condition is considerably larger than for the clear con-
dition, and this trend appears to increase across vincentiles. These
data appear most similar to the pronunciation data displayed in
Figures 5 and 6.

Stimulus Quality X Word Frequency (Animate)

Mean response latencies and accuracy. For means, the main
effects of stimulus quality, F(1, 39) = 83.01, p < .001, MSE =
2,131.28, m? = .68; Fi(1, 198) = 93.64, p < .001, MSE =
4,836.51, n2 = .32, and word frequency, Fp(l, 39) =16342,p <
001, MSE = 1,683.11, > = .81; F(1, 198) = 78.08, p < .001,
MSE = 11,028.92, 1> = .28, were significant by participants and
items. The Stimulus Quality X Word Frequency interaction was
not significant by participants or items (Fs < 1). Turning to
accuracy, only the main effect of word frequency was significant,
F(1, 39) = 96.15, p < .001, MSE = 0.0017, n? = .71; F(l,
198) = 25.25, p < .001, MSE = 0.029, "r|2 = .11. Both the main
effect of stimulus quality (p = .20) and the interaction effect (F' <
1) were not significant.

Ex-Gaussian analyses. Turning to the ex-Gaussian parame-
ters, for w, both the main effects of stimulus quality, F(1, 39) =
9.81, p = .003, MSE = 2,198.85, ~r|2 = .20, and word frequency,
F(1, 39) = 60.46, p < .001, MSE = 1,785.05, > = .61, were
significant. The interaction did not reach significance (F < 1). For
o, none of the effects were significant. Turning to T, the main
effect of stimulus quality, F(1, 39) = 14.11, p = .001, MSE =
5,579.90, n2 = .27, and the main effect of word frequency, F(1,
39) = 14.15, p = .001, MSE = 2,449.66, n* = .27, were signif-
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Table 6

Means of Participants’ Semantic Classification Response Time Means and Ex-Gaussian
Parameter Estimates as a Function of Word Frequency and Stimulus Quality (Experiment 4—

Inanimate Responses)

Stimulus quality/word frequency M % of errors n o T
Clear words

High-frequency words 764 3.5(3.3) 577 54 185

Low-frequency words 799 5.0 (3.5) 605 58 194

Frequency effect 35 1.5(0.2) 28 4 9
Mask-degraded words

High-frequency words 853 4.5 4.1) 621 64 232

Low-frequency words 910 494.2) 654 70 256

Frequency effect 57 0.4 (0.1) 33 6 24
Difference of difference (interaction) 22 —1.1(=0.1) 5 2 15

Note.  Means are given in milliseconds. Standard deviations are in parentheses.

icant, but the Stimulus Quality X Word Frequency interaction was
not significant (F < 1).

Vincentile analysis. The mean vincentiles for these data are
plotted in the top two thirds of Figure 8, and the bottom third
presents the word frequency effects for the clear and degraded
conditions as a function of vincentile. As shown in the bottom
third, these data appear a bit more noisy, and the frequency effect
appears to be somewhat larger for the degraded conditions primar-
ily at the middle vincentiles. Clearly, this pattern is quite different
from the pattern displayed in Figures 3, 5, 6, and 7, in which
reliable interactive effects were observed.

Discussion

In Experiment 4, using the semantic classification task, we
obtained interactive effects of stimulus quality and word fre-
quency, with larger stimulus quality effects for low-frequency
words. This pattern is consistent with the results from speeded
pronunciation (Experiments 2 and 3) and, more critically, is dis-
crepant with the additive effects obtained in lexical decision (Ex-
periment 1). The interaction is most clearly observed with the
responses from the nonexemplar (i.e., inanimate) trials. For the
animate trials, the two variables appeared to produce additive
effects in means, although follow-up distributional analyses indi-

Table 7

cated that this additivity was not as clear as the type observed in
Experiment 1 (cf. Figures 2 and 7).

These results reinforce the notion that exemplar trials may not
be as useful for analyzing identification processes of isolated
words (Balota & Chumbley, 1984; Forster & Shen, 1996; Sears et
al., 1999) because of heightened activation of the exemplars within
the category. Specifically, one might expect a trade-off between
degradation and priming effects. As noted, there is an interaction
between priming and word frequency, such that low-frequency
words benefit more from priming than do high-frequency words.
Hence, although low-frequency words are impaired more by deg-
radation, as reflected by the inanimate trials, they also benefit more
from being primed. Interestingly, evidence for this argument is
available from Borowsky and Besner’s (1993, Figure 8) primed
lexical decision results. When word targets were preceded by
unrelated primes, the frequency effect was much larger for de-
graded targets (regression coefficient = —61) than for clear targets
(regression coefficient = —10). In contrast, this interaction goes
away for related trials; the frequency effect was in fact very
slightly larger for clear targets (regression coefficient = —13) than
for degraded targets (regression coefficient = —6). Hence, the
Stimulus Quality X Word Frequency interaction was considerably
attenuated when words were preceded by a related prime in

Means of Participants’ Semantic Classification Response Time Means and Ex-Gaussian
Parameter Estimates as a Function of Word Frequency and Stimulus Quality (Experiment 4 —

Animate Responses)

Stimulus quality/word frequency M % of errors n o T
Clear words

High-frequency words 693 43 4.1) 523 47 170

Low-frequency words 774 10.5 (6.0) 571 53 203

Frequency effect 81 6.2 (2.1) 48 6 33
Mask-degraded words

High-frequency words 757 3.5(3.6) 542 41 218

Low-frequency words 842 10.1 (6.1) 599 55 244

Frequency effect 85 6.6 (2.5) 57 14 26
Difference of difference (interaction) 4 0.4 (0.4) 9 8 =7

Note. Means are given in milliseconds. Standard deviations are in parentheses.
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Figure 7. Experiment 4 vincentile means of participants’ semantic clas-
sification response times as a function of stimulus quality and word
frequency (inanimate responses). RT = response time; HF = high fre-
quency; LF = low frequency.

Borowsky and Besner’s study, mirroring our contrast between
animate and inanimate responses.

Of course, this account is predicated on the assumption that the
animate trials were the exemplar category and the inanimate trials
were the nonexemplar category. In principle, both the animate and
the inanimate may be represented as categories in this task, and so

it is unclear which category should be defined as exemplar or
nonexemplar. If there is indeed priming for a category as broad and
inclusive as “animate,” why should there not be priming for the
“inanimate” category? Although it is possible that one makes a
decision on the basis of an initial search of an inanimate category,
there is evidence in the data that there may be a preference to
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Figure 8. Experiment 4 vincentile means of participants’ semantic clas-
sification response times as a function of stimulus quality and word
frequency (animate responses). RT = response time; HF = high frequency;
LF = low frequency.
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search for animacy in our task. Specifically, if one examines
Tables 6 and 7, it is apparent that the semantic classification times
for animate trials were consistently faster than those for inanimate
trials. Moreover, Andrews and Heathcote (2001) also reported
faster semantic classification latencies for animate compared with
inanimate stimuli, after controlling for word frequency and number
of syllables. Collectively, this suggests that participants were using
the presence (as opposed to absence) of animacy as the dimension
by which semantic classifications were carried out.

The important finding of Experiment 4 is that when we consid-
ered RTs to nonexemplar words, we obtained the predicted inter-
action between stimulus quality and word frequency with a new set
of stimuli. Specifically, stronger stimulus quality effects were
observed for low-frequency words, a trend that is both consistent
with the findings of Experiments 2 and 3 and predicted by extant
models of word recognition.

General Discussion

The present series of experiments generated a number of notable
observations. In Experiment 1, using the LDT, we found strong
additive effects of stimulus quality and frequency in the means,
ex-Gaussian parameters, and higher order moments. Experiments
2—4 were conducted to test whether these additive effects could be
replicated in speeded pronunciation and semantic classification.
Importantly, the latter tasks yielded interactive effects between
word frequency and stimulus quality. We now turn to a discussion
of the theoretical implications of these findings.

Implications for Models of Word Recognition

The major observation in this article is that stimulus quality and
word frequency, which were strongly additive in lexical decision,
were reliably interactive in speeded pronunciation and semantic
classification. The additive effects of stimulus quality and word
frequency have traditionally been interpreted as support for serial,
independent stages (Sternberg, 1969a) and, as such, have often
been cited as support for multistage models of word recognition
(e.g., Becker & Killion, 1977; Borowsky & Besner, 1993; Forster,
1976; Paap et al.,, 1982). Conversely, it has been difficult to
reconcile additive effects of stimulus quality and word frequency
with models in which different variables influence a common
localist (McClelland & Rumelhart, 1981; Morton, 1969) or dis-
tributed (Plaut et al., 1996) word representation.

The work described in this article provides some resolution to
the conflict between the empirical findings and theoretical models.
If the additive effects of stimulus quality and word frequency are
indeed a faithful reflection of the word recognition system, then
these effects should be task independent—that is, observed in
lexical decision, speeded pronunciation, and semantic classifica-
tion. The results clearly indicate that additive effects are not task
independent but may be a function of the specific requirements of
lexical decision. In contrast to the LDT, speeded pronunciation,
using the same stimuli and the same degradation manipulation,
produced a clear interaction between stimulus quality and word
frequency, with larger word frequency effects in the degraded
condition. Similarly, the nonexemplar responses in the semantic
classification task also produced the same interaction. This inter-
action, which was replicated in three experiments, suggests that

interactive effects of stimulus quality and word frequency may be
a more general finding in lexical processing tasks than additive
effects in lexical decision performance.

Interactive effects appear troublesome for models of lexical
processing that invoke two stages. For example, Forster’s (1976,
1992) bin model of lexical access posits two separate stages: a first
stage in which candidates are identified and a second stage in
which the candidates are evaluated through a serial, frequency-
ordered process. The interaction between stimulus quality and
word frequency in pronunciation and semantic classification un-
dermines the necessity for two independent stages in lexical access
and suggests that multiple-stage models (e.g., Borowsky & Besner,
1993; Forster, 1992) may be accounting for lexical decision per-
formance rather than lexical access per se.

In contrast to the stage models, as discussed in the introduction,
interactive effects are quite consistent with activation-class mod-
els. For example, Coltheart et al.’s (2001) computational DRC
model of word recognition yields larger stimulus quality effects for
low-frequency words in simulations (Reynolds & Besner, 2004).
The following illustration provides a simple example of why one
would predict such an interaction: Consider a high-frequency
lexical entry that is 10 cycles away from threshold and a low-
frequency entry that is 20 cycles away from threshold (i.e., a word
frequency difference of 10 cycles). If the input to these two entries
is degraded such that the input on each cycle decreases by half in
the degraded condition (compared with the clear condition), then it
should take twice as many cycles for the low-frequency entry to
reach threshold. That is, the high-frequency entry will be recog-
nized in 20 (2 X 10) cycles, whereas its low-frequency counterpart
will be recognized in 40 (2 X 20) cycles. Hence, the original word
frequency effect of 10 cycles will now yield a word frequency
effect of 20 cycles in the degraded condition, thereby yielding the
Stimulus Quality X Word Frequency interaction that we observed.
The Stimulus Quality X Word Frequency interaction also appears
consistent with the connectionist approaches to lexical processing.
Specifically, the attractor network, distributed model described in
Simulation 3 of Plaut et al. (1996) produces the same pattern of
interactive effects (D. C. Plaut, personal communication, January
18, 2005).

In summary, the Stimulus Quality X Word Frequency interac-
tion appears to be an important aspect of current computational
models of word recognition. As we have emphasized, this is
precisely why the additive effects of word frequency and stimulus
quality in lexical decision are of particular interest.

Are Our Findings Specific to Our Method of Stimulus
Degradation?

One potential criticism of the present experiments is that the
findings may be specific to the type of stimulus quality manipu-
lation used. Obviously, there are many possible ways to degrade a
stimulus. Conventional methods include superimposing a random
noise pattern (Balota & Abrams, 1995; Meyer, Schvaneveldt, &
Ruddy, 1975; Stanners et al., 1975), contrast/luminance reduction
(Becker & Killion, 1977; Borowsky & Besner, 1993; Plourde &
Besner, 1997), and case alternation (Besner & McCann, 1987,
Herdman et al., 1999). The type of stimulus degradation we used
is somewhat different from these methods and involves rapidly
alternating letter strings with a randomly generated mask of the
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same length. Hence, one might question whether the findings
reported would have been observed using other methods of stim-
ulus degradation. We believe that it is important to consider the
type of degradation manipulation being used; specifying the
boundary conditions for these effects is an important research
question in its own right. However, we also believe that the
interactive effects of stimulus quality and word frequency ob-
served in Experiments 2, 3, and 4 are not merely artifacts of the
degradation manipulation used for the following four reasons.

First, using our degradation manipulation, robust additive ef-
fects of stimulus quality and word frequency were observed in
lexical decision, in line with researchers who have employed other
forms of degradation manipulation (Borowsky & Besner, 1993;
Becker & Killion, 1977; Stanners et al., 1975). Second, Plourde
and Besner (1997) also used distributional analysis to explore the
additive effects of stimulus quality and word frequency in lexical
decision, using a within-participant design with a contrast reduc-
tion manipulation. The results of the present distributional analyses
were virtually identical to Plourde and Besner’s, with additivity in
means, ex-Gaussian parameters, and higher order moments. Third,
as noted in the introduction, there is already some indication in the
literature that stimulus quality and word frequency interact in
speeded pronunciation performance when other forms of stimulus
degradation are employed. For example, Besner and McCann
(1987) reported interactive effects when case alternation was used
to degrade words, and Herdman et al. (1999) showed a clear trend
towards an interaction when contrast reduction was used. More
important, using the stimuli from the present study, O’Malley,
Reynolds, and Besner (in press) recently observed an interaction
between word frequency and stimulus degradation when a stimu-
lus contrast manipulation was used. Fourth, as mentioned in the
Discussion section of Experiment 4, there is already some indirect
evidence supporting the interactivity of stimulus quality and word
frequency in semantic classification. Specifically, our semantic
classification findings are consistent with Borowsky and Besner’s
(1993) primed lexical decision results, in which contrast reduction
was used to degrade items. When targets were preceded by unre-
lated primes, the frequency effect was much larger for degraded
targets than for clear targets, whereas the frequency effects were of
similar size for clear and degraded targets when they were pre-
ceded by related primes. Assuming that participants use prime—
target relations to bias the word response in lexical decision
performance (see Neely, 1991), the results from Borowsky and
Besner’s (1993) study with a contrast reduction manipulation are
quite consistent with our semantic classification results.

Does Additivity Necessarily Denote Stages?

Another potentially controversial issue concerns the interpreta-
tion of additive effects. As discussed in the introduction, separate
stages imply additive effects, but additive effects do not necessar-
ily imply separate stages. This is particularly critical because our
theoretical account of a perceptual normalization process that is
specific to lexical decision rests firmly on the assumption that
additive effects are indicative of an additional stage of processing.
However, as Roberts and Sternberg (1993) have pointed out, one
can obtain approximately additive effects, as in Experiment 1, with
a nonstage architecture like the cascade model.

Although the results from the present Experiment 1 do not allow
us to conclusively adjudicate between these two alternatives, we
would argue that there are several converging pieces of evidence
that are easier to reconcile with a stage than a cascade model. First,
the additivity of stimulus quality and word frequency in lexical
decision holds in means and higher order moments. The Roberts
and Sternberg (1993) simulations show that the cascade model
predicts additivity at the level of the mean but not necessarily at
the level of higher order moments. Second, if the additive effects
in lexical decision indeed represent a cascadic process, it is unclear
why such effects should be limited to lexical decision. The most
intriguing aspect of these experiments is the qualitatively different
empirical patterns across lexical processing tasks, and it is difficult
to conceptualize a single mechanism that produces additive effects
of two factors in one task but interactive effects in another. Third,
it is unclear whether the additive effects of stimulus quality and
word frequency and the interactive effects of stimulus quality and
semantic context in lexical decision can be simultaneously accom-
modated without positing stages (see Borowsky & Besner, 2006;
Plaut & Booth, 2006). The basic problem is that the sigmoid-based
single-process explanation provided by Plaut and Booth (2000)
appears to be unable to correctly simulate additive and interactive
effects of the three factors when the RTs being simulated fall
within the same range. In general, the results from Experiment 1
seem prima facie easier to reconcile with stages than with cascaded
processing. Having said that, the validity of this claim can be fully
evaluated only with appropriate simulations, and we look forward
to such modeling work in the future.

Joint Effects of Stimulus Quality, Word Frequency, and
Semantic Context

One of the motivations for this study was to better understand
the interesting conundrum in which stimulus quality has additive
effects with word frequency but interactive effects with semantic
context. If word frequency and semantic context effects indeed
reflect variations in the resting activation or activation threshold of
unitary lexical representations, it is puzzling that semantic context
and word frequency interact with stimulus quality in qualitatively
distinct ways in lexical decision. Solutions to this problem include
assuming that stimulus quality influences an encoding stage, word
frequency influences a subsequent retrieval stage, and semantic
context has effects on both stages (cf., the multistage activation
model; Borowsky & Besner, 1993), or that additive and interactive
effects represent different portions of a sigmoid input—output
activation function (cf., Plaut & Booth, 2000).

The fact that additive effects of stimulus quality and word
frequency are localized in lexical decision performance (at least
for this series of experiments) suggests that the paradoxical joint
effects of stimulus quality, word frequency, and semantic context
may not apply to word recognition performance in general but are
specific to the LDT. We have claimed that lexical decision em-
phasizes familiarity-based information, and degradation under-
mines this information, making normalization necessary. If this is
the case, it is not immediately obvious why stimulus degradation
should have differential effects on semantically primed versus
unprimed words but equivalent effects on high- versus low-
frequency words. For example, one might consider priming effects
as reflecting some kind of lexical spreading activation mechanism



202 YAP AND BALOTA

(cf., Anderson, 1983; Collins & Loftus, 1975); CAT facilitates the
recognition of DOG because activation spreads rapidly from CAT
to its associates when the prime is presented. Clearly, this kind of
account implicates a lexical locus for priming effects. However,
we have already argued that for lexical decision, the early percep-
tual normalization stage is insensitive to top-down lexical feed-
back, making it unclear why degraded targets show a larger prim-
ing effect in lexical decision.

A study by Stolz and Neely (1995) may provide some resolution
to this puzzle. In two lexical decision experiments, Stolz and Neely
examined how the typically observed interaction between stimulus
quality and semantic context was modulated by variables like
relatedness proportion (the proportion of prime—target trials shar-
ing a semantic relation) and prime—target stimulus onset asyn-
chrony. Interestingly, they observed the standard overadditive
Stimulus Quality X Semantic Context interaction only when the
relatedness proportion was .50. In contrast, when the relatedness
proportion was reduced to .25, additive effects of stimulus quality
and relatedness were obtained. Importantly, these effects were
observed with stimulus onset asynchronies of both 200 ms and 800
ms, indicating that these effects cannot be attributed entirely to
expectancy-based processes.

To summarize, one obtains interactive effects of stimulus qual-
ity and semantic context when relatedness proportion is high but
additive effects when relatedness proportion is low. We interpret
these findings as being consistent with the idea that when the
relatedness proportion is high (i.e., the payoff is high), participants
have an incentive to attend to the semantic context (possibly due to
checking for a prime—target relationship to bias the word re-
sponse), and this is reflected by larger priming effects for the
degraded targets. In contrast, when the relatedness proportion is
low (i.e., the payoff is low), participants have less incentive to use
the context in lexical decision. Instead, stimuli are perceptually
normalized before lexical retrieval processes are engaged, and this
is reflected by priming effects that are equivalent for clear and
degraded targets. The fact that interactive effects are specific to
priming conditions in which relatedness proportion is high sug-
gests that strategic control may be associated with the typical
Stimulus Quality X Semantic Context interaction. The important
point is that when the participant has little incentive to attend to the
semantic context, the perceptual normalization process in lexical
decision does not seem to be sensitive to top-down lexical feed-
back.

Implications for Models of Lexical Decision Performance

Collectively, the results of the four experiments suggest that
additive effects of word frequency and stimulus degradation, and
their implication of an early stimulus normalization stage, are
specific to lexical decision. Just as the main effect of frequency
may be exaggerated by the discrimination component of the LDT
(Balota & Chumbley, 1984), lexical decision may require de-
graded word stimuli to undergo perceptual normalization before
they can be classified as a word or a nonword. This may reflect the
emphasis on familiarity-based information to make the lexical
decision (Balota & Chumbley, 1984). Specifically, because this
familiarity-based information is undermined by degradation, the
LDT encourages a normalization process to recover that informa-
tion so that familiar words can be discriminated from unfamiliar

nonwords. Interestingly, as discussed earlier, degradation also
produces additive effects with stimulus set size in a memory
scanning task. It is possible that in experimental contexts in which
binary decisions are demanded and familiarity is a useful dimen-
sion to make the binary decision, there is an increasing emphasis
on familiarity-based information to drive the response, making it
necessary to normalize stimuli before familiarity-based informa-
tion is readily available.

How might familiarity map onto the lexical processes in extant
word recognition models? In lexical decision, the datum driving a
“word” response can be based on a specific orthographic entry or
all the entries in the orthographic lexicon. For example, both the
DRC model (Coltheart et al., 2001) and the multiple read-out
model (MROM; Grainger & Jacobs, 1996) make word lexical
decisions when the activation level of a single lexical representa-
tion (local activity) or the summed activation levels of all lexical
representations (global activity) exceed their respective thresholds.
Global lexical activation would seem to map onto familiarity. In
general, words will have higher global lexical activity than non-
words, making this a very diagnostic dimension for word—nonword
discrimination. Indeed, for the lexical decision stimuli used in
Experiment 1, the mean orthographic neighborhood size was
higher for words (4.80) than for nonwords (3.38), where ortho-
graphic neighborhood size is defined as the number of words that
can be created by changing a single letter of the target word
(Coltheart et al., 1977). Orthographic neighborhood size is an
approximate measure of the number of words that are orthograph-
ically similar to a target and functions as a good proxy for global
lexical activity. It is possible that word—nonword discrimination
relies heavily on this dimension. In contrast, it is clear that global
lexical activity is not useful in either speeded pronunciation or
semantic classification performance. For example, in the DRC and
MROM simulations, global lexical activity drives “word” re-
sponses in lexical decision but not pronunciation or perceptual
identification responses (Coltheart et al., 2001; Grainger & Jacobs,
1996). The system needs to locate a specific lexical entry before
phonology can be initiated or an impoverished stimulus can be
identified. We argue that this is also the case for the semantic
classification task.

Thus far, we have sought to explain the between-task dissocia-
tions primarily in terms of lexical decision’s emphasis on famil-
iarity. This, of course, is overly simple. The LDT clearly is not a
unitary task and has been likened to a signal-detection task that
may recruit different types of information depending on the spe-
cific nonword context (Seidenberg, 1990). For example, when
orthographically illegal words (e.g., BRNTA) are used as foils,
discrimination can be based on orthographic information alone. In
contrast, when orthographically legal words (e.g., BRANT) are
used, then either phonological or semantic information needs to be
consulted. Furthermore, Yap et al. (2006) have demonstrated that
for the same set of high- and low-frequency words, the word
frequency effect increases as nonword foils become more wordlike
(i.e., BRNTA vs. BRANT vs. BRANE), and this Nonword Type X
Word Frequency interaction is modulated by different components
of the RT distribution, depending on the specific nonword contrast
being examined.

Such findings reinforce the idea that lexical decision perfor-
mance for words is strongly modulated by the specific nonword
context. It is quite plausible that when foils are very similar to
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words (homophonous with a real word, e.g., BRANE), the LDT is
more likely to emphasize fine-grained, letter-by-letter individua-
tion compared with when foils are very distinct from words (or-
thographically illegal and unpronounceable, e.g., BRNTA). In the
present lexical decision experiment, the words possessed denser
orthographic neighborhoods than the nonwords, making global
lexical activity (or familiarity) a viable dimension for word—
nonword discrimination. Degradation attenuated this global acti-
vation/familiarity dimension, making normalization necessary for
the signal to be recovered. Of course, this also implies that when
global lexical activity is less useful for discriminating between
words and nonwords (e.g., when global lexical activity of words
and nonwords are perfectly matched), the emphasis on familiarity-
based information is reduced, and normalization may no longer be
mandatory. This leads to the intriguing prediction that the effects
of stimulus quality and word frequency in lexical decision may
become interactive when global activity is less useful for discrim-
inating words from nonwords (D. Besner, personal communica-
tion, January 3, 2006). For example, when pseudohomophones
(e.g., BRANE) are used as foils, there is more overlap of global
lexical activity/familiarity between the words and distractors, mak-
ing it more likely that the system will rely on local lexical activity
to drive decisions. The central issue here is whether additive
effects of stimulus quality and word frequency in lexical decision
generalize to situations in which words and nonwords overlap
heavily in familiarity. This is an important empirical question that,
as far as we know, has not been addressed in the literature.

To summarize, the claim is that for the stimuli used in Exper-
iment 1, global lexical activity is diagnostic for word—nonword
discrimination. However, this creates a curious situation. Thus far,
we have argued that global lexical activity plays more of a role in
lexical decision than in pronunciation or semantic classification, in
which a specific lexical candidate has to be identified. However,
given that our high- and low-frequency words were matched on
orthographic neighborhood size (a good proxy for global lexical
activity), one would expect relatively attenuated frequency effects
in lexical decision if global lexical activity were the primary
source of information consulted for lexical decision. In contrast,
one would predict larger frequency effects for speeded pronunci-
ation, which relies mainly on local lexical activity. Nevertheless,
for the same set of words,® we obtained larger frequency effects in
lexical decision compared with pronunciation, a trend that is very
consistent with the literature (see, e.g., Andrews & Heathcote,
2001; Balota & Chumbley, 1984). There is a relatively straight-
forward response to this apparent discrepancy. First, even if high-
and low-frequency words are perfectly matched on orthographic
neighborhood size, high-frequency words will still posses higher
global lexical activation than low-frequency words, because of the
frequency of the target word. Second, lexical decision may engage
a postlexical decision process that is highly sensitive to such
differences in activation, and this decision component can exag-
gerate the word frequency effect either through an additional
attention-demanding check process (e.g., Balota & Chumbley,
1984; Balota & Spieler, 1999) or through a noisy evidence-
accumulating process (e.g., Ratcliff et al., 2004). Again, because
word frequency effects are strongly modulated by the type of
nonwords, it is important to keep in mind that frequency effects in
lexical decision reflect both the properties of lexical access and
decision mechanisms (see Yap et al., 2006, for further discussion).

Interestingly, the robust Stimulus Quality X Lexicality interac-
tion observed in Experiment 1 (larger stimulus quality effects for
nonwords) also makes it clear that words are more resistant to
degradation than nonwords (see Table 3). As pointed out in the
Discussion section of Experiment 1, this interaction may reflect a
more conservative response criterion for degraded nonwords. In
any case, it is clear that the effects of stimulus quality, and the
variable’s intriguing relationship with word frequency and lexical-
ity, have not been adequately considered by extant models of
lexical decision performance. For example, an early perceptual
normalization stage is outside the scope of extant models that
accommodate lexical decision performance, such as the MROM
(Grainger & Jacobs, 1996), the DRC model (Coltheart et al.,
2001), the two-stage model of lexical decision performance
(Balota & Spieler, 1999), and Ratcliff et al.’s (2004) diffusion
model.

In particular, Ratcliff and colleagues have proposed that all the
important phenomena in lexical decision could be modeled using
a diffusion process. In the diffusion model, a type of random-walk
model, binary decisions are driven by the accumulation of noisy
information from a stimulus over time. The diffusion process starts
from point Z, and information accumulates toward either of two
decision criteria, reflected by a (positive response boundary) and 0
(negative response boundary), respectively. When a criterion is
reached, a response is made. The rate at which information accu-
mulates is the drift rate. More wordlike words (e.g., high-
frequency words) have a steeper drift rate than less wordlike words
(e.g., low-frequency words) and thus reach the “word” criterion
earlier. Analogously, less wordlike nonwords (e.g., orthographi-
cally illegal nonwords, NBRO) have a steeper drift rate than more
wordlike nonwords (e.g., orthographically legal nonwords,
BRON), and they also reach the “nonword” criterion earlier. The
predicted drift rates for the different kinds of words and nonwords
can be computed from a simple two-dimensional representation of
the strings’ wordlikeness, the two dimensions being lexical
strength and orthographic wordlikeness. The difference among
drift rates between high-frequency words and low-frequency
words is also exaggerated when the similarity between words and
nonword foils is decreased, as when orthographically illegal foils
like HGQPA are used, compared with pronounceable foils such as
FLIRP.

Ratcliff et al. (2004) reported that drift-rate variations were
sufficient for modeling a variety of lexical decision phenomena.
Intuitively, however, it is unclear how the diffusion model could
simulate both the additive effects of stimulus quality and word
frequency coupled with the interactive effects of stimulus quality
and lexicality using drift rate alone. For example, stimulus degra-
dation might decrease the drift rates of high- and low-frequency
words. This, however, would predict larger frequency effects for
degraded words, which is inconsistent with the lexical decision
data. Without carrying out actual fitting with the diffusion model,
there is no immediately obvious way for accommodating our
findings within the diffusion framework. It is at least conceivable
that additive effects of stimulus quality and word frequency, cou-
pled with the interactive effects of lexicality and degradation,
challenge the claim that the diffusion model provides a unified

¢ A different set of words was used for semantic classification.
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account of lexical decision phenomena (Ratcliff et al., 2004). Of
course, this is not only a potential problem for the diffusion model;
we believe that this intriguing pattern is a challenge for virtually all
extant models of lexical decision performance.

Utility of Distributional Analyses and Cross-Task
Convergence

These experiments underscore how distributional analyses serve
as a valuable complement to traditional analyses of means. Both
ex-Gaussian fitting and vincentile plots are accessible, intuitive
tools that can exploit the entire RT distribution, allowing existing
data to be scrutinized at a more fine-grained level. Clearly, there
may be alternative ways of considering a variable’s influence on
RT distributions that are preferable (see Van Zandt, 2000, for
several examples). For example, RT distributions have also been
modeled with the Weibull (Logan, 1995) and ex-Wald (Schwarz,
2001) distributions. In this study, we have demonstrated how
ex-Gaussian analyses allow mean differences to be partitioned into
two components: one that reflects distributional shifting and one
that reflects distributional skewing. Importantly, ex-Gaussian anal-
ysis allows researchers to evaluate aspects of models that are not
testable with traditional analyses of means (Hockley, 1984). More-
over, in our analyses, assumption-free vincentile plots were pre-
sented alongside ex-Gaussian parameter estimates (cf., Andrews &
Heathcote, 2001), providing converging validation of parameter
estimates and a representation of the raw data. As Roberts and
Sternberg (1993) have forcefully argued, these converging distri-
butional approaches are particularly critical in adjudicating be-
tween interactive and stage models.

The present findings also highlight the importance of cross-task
convergence and the importance of separating task-specific and
task-general operations. In agreement with Jacoby’s (1991) argu-
ment in the memory literature, we argue that it is unlikely there are
process-pure measures of lexical processing. Participants bring to
tasks online processes that maximize performance under a given
set of conditions (Balota, Paul, & Spieler, 1999). In this light, there
is probably no general, unitary lexical retrieval mechanism. In-
stead, lexical identification processes are likely to be modulated by
the task context in which they are embedded.
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