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This article evaluates 2 competing models that address the decision-making processes mediating word
recognition and lexical decision performance: a hybrid 2-stage model of lexical decision performance and
a random-walk model. In 2 experiments, nonword type and word frequency were manipulated across 2
contrasts (pseudohomophone–legal nonword and legal–illegal nonword). When nonwords became more
wordlike (i.e., BRNTA vs. BRANT vs. BRANE), response latencies to nonwords were slowed and the word
frequency effect increased. More important, distributional analyses revealed that the Nonword Type �
Word Frequency interaction was modulated by different components of the response time distribution,
depending on the specific nonword contrast. A single-process random-walk model was able to account
for this particular set of findings more successfully than the hybrid 2-stage model.
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The study of the processes underlying isolated visual word
recognition is a major endeavor in experimental psychology and
has provided insights in domains as diverse as psycholinguistics,
pattern recognition, computational modeling, attention, and neu-
roscience. Although many procedures have been developed for
studying word recognition, the speeded lexical decision task (LDT;
Rubenstein, Garfield, & Millikan, 1970) remains one of the most
widely used tasks (e.g., Murray & Forster, 2004; Ratcliff, Gomez,
& McKoon, 2004). In this task, participants are presented with a
letter string and are required to decide as quickly as possible
whether the string forms a word or nonword, most typically with
a keypress response. Findings obtained in the LDT have been very

influential in informing models of word recognition (e.g., Colt-
heart, Rastle, Perry, Langdon, & Ziegler, 2001).

A number of models have been proposed to accommodate
lexical decision performance (see Ratcliff et al., 2004, for a recent
review). For example, the classic logogen model (Morton, 1969)
posits word detectors (logogens) for every lexical entry. When a
word (e.g., DOG) is presented, the logogen for DOG accumulates
evidence until some threshold is reached and word identification
takes place. The original logogen model could not handle non-
words, but more recent extensions to the model can carry out a
lexical decision. For example, Grainger and Jacob’s (1996) mul-
tiple read-out model (MROM) implements three processes that
drive a lexical decision response. Word responses are produced
when either the activation level of a single lexical representation
(local activity) or the summed activation levels of all lexical
representations (global activity) exceed their respective thresholds.
Nonword responses are produced when lexical activity does not
reach threshold after some (variable) time deadline. The dual-route
cascaded (DRC) model (Coltheart et al., 2001) adopts essentially
the same principles to accommodate performance in the LDT. It is
important to note, for these two examples, that the speed and
accuracy of lexical decision responses are yoked to the activity of
the word representations contained in the models’ lexicons. Lex-
ical decisions have also been instantiated in parallel distributed
processing (PDP) reading models, which contain distributed or-
thographic and semantic representations (Plaut, 1997). In the latter
framework, words or nonwords that are presented to the model
generate varying degrees of stress values, which reflect how se-
mantically familiar they are. A decision criterion can then be
adopted that allows the model to discriminate between words
(stress values higher than criterion) and nonwords (stress values
lower than criterion). This approach assumes that lexical decision
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performance is driven by the activity of (distributed)
representations.

In this article, we focus on two different approaches to lexical
decision that emphasize the decision processes tied to lexical
decision. Two models that specifically address the decision-
making processes that mediate word identification and behavioral
responses are the two-stage model of lexical decision performance
(Balota & Chumbley, 1984; Balota & Spieler, 1999) and the
diffusion model (Ratcliff et al., 2004). It is important to note that
both frameworks have been used extensively in accommodating
data in binary decision tasks, ranging from memory scanning
(Atkinson & Juola, 1974) to episodic memory retrieval (Ratcliff,
1978). Moreover, both the two-stage model and the diffusion
model have been shown to successfully accommodate basic lexical
decision phenomena. It is interesting to note, though, that these
two models are built on very different premises. The diffusion
model assumes that a single process can drive lexical decision,
whereas the two-stage model suggests that there are two qualita-
tively distinct processes. Whether lexical decision is better accom-
modated by a single- or a dual-process model is another instance
of a broader distinction across a wide variety of domains (see, e.g.,
Yonelinas, 2002). Just as the debate between proponents of these
two theoretical approaches has ramifications beyond psycholin-
guistics, the answer to the proposed question gives greater leverage
in understanding how binary decisions are carried out in general.
In this article, we explore this issue systematically. We begin by
examining some interesting constraints in lexical decision perfor-
mance, then describe the two classes of models, and finally quan-
titatively evaluate which approach accommodates the results from
two experiments more successfully.

Interaction Between Nonword Type and Word Frequency

A critical variable that has been investigated in lexical decision
performance is the similarity of the nonwords to real words.
Nonwords can be pronounceable and orthographically legal (e.g.,
FLIRP), unpronounceable and orthographically illegal (e.g., RPFLI),
or homophonous with real words (e.g., BRANE). As one might
expect, nonword type powerfully modulates lexical decision laten-
cies for word trials and also produces interactive effects with other
variables that influence lexical decision performance. For exam-
ple, the word-frequency effect (faster lexical decision latencies for
frequently encountered words) is strongly modulated by the type
of nonword context.

Stone and Van Orden (1993) systematically manipulated non-
word type and word frequency in lexical decision and observed the
pattern presented in Table 1. As nonwords become more similar to
words, two trends are apparent. Lexical decision word latencies
become slower, and, more intriguingly, the word-frequency effect
becomes larger. Stone and Van Orden interpreted these results as
consistent with both a pathway selection framework and a random-
walk framework. The pathway selection framework proposes that
the lexical processing system consists of independent processing
modules that are interconnected by pathways. Manipulating the
nature of the nonwords alters the task context, and the system
strategically selects the pathways that optimize task performance.
More relevantly for this article, the results were also accommo-
dated within a random-walk framework. The random-walk model
has been useful for describing various aspects of binary decisions

(Ratcliff & Rouder, 1998) and is a member of a more general class
of sequential sampling models. The random-walk perspective con-
ceptualizes lexical decision as an evidence-accumulating process.
When a stimulus is presented, noisy information is accumulated
over time toward one of two possible decision boundaries, word or
nonword in the case of LDT (see Figure 1). A word response is
produced when the accumulation process reaches the word bound-
ary; a nonword response is produced when the accumulation
process reaches the nonword boundary. For the simplest random-
walk model, two parameters are of interest: the signal strength and
the response criterion. Signal strength refers to the rate of evidence
accumulation and is greater for stimuli that are processed more
efficiently (e.g., high-frequency words). The response criterion
refers to the distance of the boundaries from the start point;
increasing the response boundaries reflects more conservative re-
sponse criteria.

Using this simple random-walk model, Stone and Van Orden
(1993) argued that there is a linearly decreasing concave function
between signal strength and the amount of time needed to reach
criterion (see Figure 2), that is, the same change in signal strength
has a greater impact on response times (RTs) when signal strength
is lower compared with when signal strength is higher. The inter-
action between nonword type and word frequency is predicted by
this function. Low-frequency words have lower signal strengths
than high-frequency words. When nonwords become more word-
like (e.g., from BRONE to BRANE), word–nonword discrimination
becomes more difficult. The signal strengths of both low- and
high-frequency words decrease, leading to longer decision times. It
is important to note that because of the concave function, word-
frequency effects are larger in the pseudohomophone condition
than in the legal nonword condition, mimicking the pattern pre-
sented in Table 1. Putatively, this account also explains why
word-frequency effects are larger in the legal nonword condition
than in the illegal nonword condition. It is important to note,
though, that Stone and Van Orden’s data were examined at the
level of the mean and there was no explicit implementation of this
model. Hence, it was a descriptive account of the pattern observed
in the means. As shown below, analyzing the same data at the level
of distributional characteristics may yield further insights that are
neither apparent nor intuitive.

An alternative account of the Nonword Type � Word Fre-
quency interaction is provided by Balota and Chumbley’s (1984)
two-process model, which is based on Atkinson and Juola’s (1974)

Table 1
Means of Participants’ Mean Lexical Decision Response Times
(in Milliseconds) as a Function of Word Frequency and
Nonword Type

Word
frequency

Illegal nonwords
(RPFLI)

Legal nonwords
(FLIRP)

Pseudohomophones
(BRANE)

Low 578 697 867
High 542 621 707
Effect 36 76 160

Note. Data reproduced from “Strategic Control of Processing in Word
Recognition,” by G. O. Stone and G. C. Van Orden, 1993, Journal of
Experimental Psychology: Human Perception and Performance, 19, p.
753. Copyright 1993 by the American Psychological Association.
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two-stage model of memory search. The application of this frame-
work to lexical decision performance is displayed in Figure 3. This
model was originally advanced as an account of task-specific
effects in lexical decision (Balota & Chumbley, 1984) and was

motivated by the observation that frequency effects are different in
size across lexical decision, naming, and category classification,
three tasks that presumably tap the same word identification pro-
cess. Balota and Chumbley found that frequency effects were
largest in lexical decision and argued that this pattern was likely
due to the fact that the frequency effect reflects both word iden-
tification processes and the word–nonword discrimination process
that is specific to that task.

Balota and Chumbley (1984) suggested that words and non-
words could be conceived as reflecting two underlying distribu-
tions that vary along a familiarity–meaningfulness (FM) dimen-
sion. Participants can use two types of information to make lexical
decisions. The first is a relatively fast-acting familiarity-based
signal and the second is a slower, more attention-demanding
signal, which may involve explicitly checking the spelling of the
stimulus. Low-frequency words are particularly sensitive to vari-
ables that modulate the checking process because low-frequency
words are more likely to overlap with the nonwords on the FM
dimension. Hence, as one increases the overlap between the two
distributions by making the nonwords more similar to the words,
this further increases the checking process for the low-frequency
words, thereby slowing these items. Therefore, greater checking
will occur for low-frequency words when these items are embed-
ded in lists with pseudohomophones, compared with legal non-
words. Moreover, the smallest amount of checking will occur for
low-frequency words when these items are embedded in lists with
illegal nonwords because the nonword distribution will overlap
very little with the word distribution. Hence, the two-stage model
also accommodates Stone and Van Orden’s (1993) Nonword
Type � Word Frequency interaction by assuming two distinct
processes instead of a single random-walk process. In addition, the
framework was able to qualitatively account for other lexical

Figure 1. Illustration of the diffusion model. The different slopes reflect
a diffusion process, which is the continuous version of the random-walk
model. Z refers to the starting point, and the point at which the slope
intersects with the word or nonword boundary is the time taken for a
decision (word or nonword) to be made. T � the point at which processing
terminates. From “Modeling Response Times for Two-Choice Decisions,”
by R. Ratcliff and J. F. Rouder, 1998, Psychological Science, 9, p. 348.
Copyright 1998 by the American Psychological Society. Adapted with
permission.

Figure 2. The concave function between signal strength and finishing
times in the random-walk model. LF � low frequency; HF � high
frequency. From “Strategic Control of Processing in Word Recognition,”
by G. O. Stone and G. C. Van Orden, 1993, Journal of Experimental
Psychology: Human Perception and Performance, 19, p. 765. Copyright
1993 by the American Psychological Association. Adapted with permis-
sion.

Figure 3. The two-stage model of lexical decision performance. FM �
familiarity–meaningfulness. From “Are Lexical Decisions a Good Measure
of Lexical Access? The Role of Word Frequency in the Neglected Decision
Stage,” by D. A. Balota and J. I. Chumbley, 1984, Journal of Experimental
Psychology: Human Perception and Performance, 10, p. 352. Copyright
1984 by the American Psychological Association. Reprinted with permis-
sion.
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decision effects (e.g., blocking effects and repetition effects) that
were troublesome for certain extant word recognition models.

Beyond Measures of Central Tendency

In standard chronometric studies, a set of RTs for a particular
experimental condition is collected for each participant. Typically,
the mean of those response times (MRT) is then computed, with
MRT providing an estimate of the central tendency for that condi-
tion. Of course, it is possible that variables do not simply shift the
RT distribution, as implicitly assumed by analyses based on
means; variables may also change the shape of the distribution.
Hence, when possible, it is also useful to investigate the influence
of a variable on the shape (e.g., variance, skew) of a distribution
(Andrews & Heathcote, 2001; Heathcote, Popiel, & Mewhort,
1991; Yap & Balota, in press). For example, fitting the ex-
Gaussian function to data (Hohle, 1965; Luce, 1986; Ratcliff,
1979) allows researchers to estimate how different variables shift,
skew, or shift and skew RT distributions. An ex-Gaussian analysis
characterizes an RT distribution by assuming an explicit model for
the shape of the distribution. This model is a convolution of the
normal (Gaussian) and exponential distributions and has three
parameters: �, the mean of the normal distribution; �2, the vari-
ance of the normal distribution; and �, a reflection of the mean and
standard deviation of the exponential distribution. In addition to
providing unusually good fits to positively skewed empirical RT
distributions (Luce, 1986, p. 439), one useful consequence of
ex-Gaussian analysis is that the algebraic sum of � and � is
approximately equivalent to the mean when one estimates param-
eters from empirical data (� and � are exactly equal to the mean in
the theoretical ex-Gaussian model). Briefly, this property allows
differences in means to be conveniently partitioned into two com-
ponents: a component that is associated with distributional shifting
(�) and a component that is associated with distributional skewing
(�). There are at least two other reasons why such a distributional
analysis might be valuable.

First, Heathcote et al. (1991) pointed out that analyzing mean
RTs can often be inadequate and misleading because such an
analysis does not consider the shape of the RT distributions. For
example, they examined Stroop color-naming performance with
both traditional and ex-Gaussian analyses. On the basis of mean
response latencies, there was no difference between the congruent
(RED displayed in red) and baseline (XXX displayed in red)
conditions. This suggests that congruency has no effect on color
naming, relative to the baseline. However, ex-Gaussian analyses
revealed that naming RTs in the congruent condition were facili-
tated (faster than baseline) in � but inhibited (slower than baseline)
in �. In this instance, congruency shifted the RT distribution
leftward while increasing its skew. These two effects cancelled
each other out, spuriously producing null effects of congruency
(see Spieler, Balota, & Faust, 1996, for a replication of this
trade-off).

Second, by exploiting more of the information available in a RT
distribution, one can make increasingly sophisticated predictions
about how a variable might modulate the shape of a distribution,
rather than just asking whether a variable has an effect in mean
RTs. This is useful when one is trying to adjudicate between two
models. Models may be indistinguishable at the level of the mean

but make different predictions at the level of the RT distribution
(see Hockley, 1984; Mewhort, Braun, & Heathcote, 1992).

The two experiments reported in this article represent an exten-
sion of Stone and Van Orden’s (1993) Experiment 1, with non-
word type (legal nonwords, illegal nonwords, and pseudohomo-
phones) and word frequency (high and low) factorially
manipulated in a lexical decision task. To obtain a sufficient
number of observations to provide adequate estimates of RT
distributional characteristics, we collected 100 observations for
each of the cells for each participant. Experiment 1 examined the
contrast between legal nonwords (e.g., FLIRP) and pseudohomo-
phones (e.g., BRANE), whereas Experiment 2 examined the con-
trast between illegal nonwords (e.g., RPFLI) and legal nonwords.
It is important to note that we examine the joint effects of the two
variables on RT distributional properties, using both ex-Gaussian
analysis and a nonparametric technique called vincentizing, de-
scribed in the Results section of Experiment 1. Following the
empirical section, we describe and implement the two modeling
frameworks and then test which framework better accommodates
the observed effects, both at the level of the mean and at the level
of distributional characteristics.

Experiment 1

Method

Participants. A total of 75 young adults (mean age � 19.2 years, SD �
1.65) participated in this experiment for course credit. All participants had
normal or corrected-to-normal vision and were recruited from the under-
graduate student population of Washington University. The participants
had an average of 13.7 years of education (SD � 1.17) and a mean
vocabulary age of 18.2 years (SD � 0.88) on the Shipley Vocabulary
subtest (Shipley, 1940).

Data from 7 of the 75 participants were discarded because of excessively
high error rates and/or slow latencies via the following procedure. To
identify outlier participants,1 we combined each participant’s response
latencies and error rates into a vector of four scores (mean RTs for high-
and low-frequency words; error rate for high- and low-frequency words),
and then computed the Mahalanobis D2 metric (Lattin, Carroll, & Green,
2003) for each participant’s vector. The Mahalanobis D2 reflects a multi-
variate Z-score and indicates how discrepant a vector is from the centroid
(multidimensional equivalent of the mean). Participants who had D2 scores
with unusually low probability values (i.e., ps � .05) were discarded. This
approach is advantageous in that it identifies multivariate outliers and does
not rely on arbitrary criteria defined with respect to a single variable. In
total, there were 35 participants in the legal nonword condition and 33
participants in the pseudohomophone (PsH) condition.

Apparatus. An IBM-compatible computer controlled stimulus presen-
tation and collected response latencies, via the keyboard, to the nearest
millisecond. The stimuli were displayed on a 17-in. (43.18-cm) Super VGA
monitor.

Stimuli. The stimuli consisted of 200 words, 200 length-matched pro-
nounceable nonwords, and 200 length-matched PsHs. Using the HAL
(hyperspace analogue to language) frequency norms (Lund & Burgess,
1996), 100 words were designated high frequency (median log counts per
131 million � 11.09) and 100 words were designated low frequency

1 To determine whether participant and RT screening procedures were
influencing the results, we reanalyzed the data using all participants and
less conservative screening criteria, that is, removing only latencies faster
than 200 ms and slower than 3,000 ms. The pattern of results did not
change.
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(median log counts per 131 million � 7.76). Nonwords were constructed
by changing one to three letters of the word items. Words and nonwords
ranged from three to seven letters in length. For high-frequency words, the
mean orthographic neighborhood size (Coltheart, Davelaar, Jonasson, &
Besner, 1977) was 4.77, and the mean summed bigram frequency was
6,369.86. For low-frequency words, the mean orthographic neighborhood
size was 4.82, and the mean summed bigram frequency was 6,149.13.
There was no significant difference between high- and low-frequency
words with respect to both orthographic neighborhood, t(198) � �0.08,
p � .94, and summed bigram frequency, t(198) � 0.42, p � .67. For the
nonwords, the mean orthographic neighborhood size was higher for PsHs
(mean N � 4.41) than for legal nonwords (mean N � 3.38; p � .02).2 The
mean summed bigram frequency was higher for PsHs (6,663.5) than for
legal nonwords (5,984.7).

Procedure. Participants were tested individually in sound-attenuated
cubicles. They were seated about 60 cm from the computer screen. Before
the experimental trials began, participants completed a computer-
administered Shipley Vocabulary subtest (Shipley, 1940).

For the LDT, participants were told that letter strings would be presented
in the center of the screen and that their task was to indicate as quickly and
as accurately as possible via a buttonpress on the keyboard whether the
letter string was a word or nonword. Participants then received 20 practice
trials and four experimental blocks of 100 trials, with mandatory breaks
occurring between blocks. The order in which stimuli were presented was
randomized anew for each participant. Each trial consisted of the following
order of events: (a) a fixation point (�) at the center of the monitor for
2,000 ms, (b) a blank screen for 250 ms, and (c) a letter string centered at
the fixation point’s location. The letter string remained on the screen until
a response was made. Participants pressed the slash key for words and the
Z key for nonwords. Responses were followed by a 1,500-ms delay. If the
response was incorrect, 750 ms of that 1,500 ms was consumed by a
200-Hz tone and an Incorrect Response message was displayed.

Design. A 2 � 2 factorial design was used: Nonword type (PsH or
legal) was manipulated between participants, whereas word frequency
(high or low) was manipulated within participant.

Results

Errors (5.9% across both conditions) and response latencies
faster than 200 ms or slower than 3,000 ms were first excluded

from the analyses. On the basis of the remaining observations, the
overall mean and standard deviation of each participant’s word and
nonword latencies were computed. Response latencies 2.5 stan-
dard deviations above or below each participant’s respective mean
latency were removed. These criteria eliminated a further 5.0% of
the lexical decision responses. Analyses of variance (ANOVAs)
were then carried out on the mean response latencies and accura-
cies (both by participants and items) and also the ex-Gaussian
parameters of the word and nonword RT data (see Table 2).

Word response latencies. For mean response latencies, the
main effect of nonword type, Fp(1, 66) � 10.42, p � .002, MSE �
16,467.33, 	2 � .14; Fi(1, 198) � 162.27, p � .001, MSE �
3,641.59, 	2 � .45, was significant, as was the main effect of word
frequency, Fp(1, 66) � 433.09, p � .001, MSE � 594.80, 	2 �
.87; Fi(1, 198) � 248.05, p � .001, MSE � 3,525.47, 	2 � .56.
More important, the Nonword Type � Word Frequency interac-
tion was also significant, Fp(1, 66) � 13.91, p � .001, MSE �
594.80, 	2 � .17; Fi(1, 198) � 11.93, p � .001, MSE � 3,641.59,
	2 � .06. As shown in Table 2, there were larger frequency effects
in the presence of PsHs compared with legal nonwords.

Percentage correct. Turning to the accuracy data, the main
effect of nonword type, Fp(1, 66) � 8.51, p � .005, MSE �
0.0014, 	2 � .11; Fi(1, 198) � 3.35, p � .07, MSE � 0.0079,
	2 � .017, was significant, as was the main effect of word
frequency, Fp(1, 66) � 184.08, p � .001, MSE � 0.0009, 	2 �
.74; Fi(1, 198) � 112.06, p � .001, MSE � 0.0061, 	2 � .36. The
Nonword Type � Word Frequency interaction was significant,
Fp(1, 66) � 8.99, p � .004, MSE � 0.0009, 	2 � .12; Fi(1, 198) �
3.43, p � .07, MSE � 0.0079, 	2 � .017, with larger frequency
effects observed in the PsH condition than in the legal nonword
condition.

Ex-Gaussian analyses. Ex-Gaussian parameters (�, �, �) were
obtained for each participant using continuous maximum likeli-
hood estimation in R (R Development Core Team, 2004). Contin-
uous maximum likelihood estimation provides relatively efficient
and unbiased parameter estimates (Van Zandt, 2000) and uses all
of the available raw data (see Heathcote, Brown, & Mewhort,
2002, for an alternative approach). Using Nelder and Mead’s
(1965) simplex algorithm, negative log likelihood functions were
minimized in the R statistics package (cf. Speckman & Rouder,
2004), with all fits successfully converging within 500 iterations.

For �, the main effect of nonword type approached significance,
F(1, 66) � 3.46, p � .07, MSE � 5,061.67, 	2 � .05, whereas the
word-frequency effect was significant, F(1, 66) � 180.59, p �
.001, MSE � 356.62, 	2 � .73. The Nonword Type � Word
Frequency interaction was not significant (F � 1). Turning to �,
the main effect of word frequency was significant, F(1, 66) �

2 The fact that the PsHs and legal nonwords were not matched on
orthographic neighborhood size suggests that any observed nonword type
effects cannot be unambiguously attributed to pseudohomophony; it is
quite possible that orthographic neighborhood is also making a contribu-
tion. However, in Experiment 1, we are not claiming (and do not plan to
claim) that pseudohomophony per se is responsible for the observed
effects. Rather, we are primarily interested in manipulating the familiarity
of the nonword context and examining how foils that are more similar to
targets (i.e., PsHs) influence the responses to words. Clearly, familiarity in
this instance is a multidimensional quantity that could encompass
pseudohomophony and/or orthographic neighborhood size.

Table 2
Means of Participants’ Mean Lexical Decision Response Times
(in Milliseconds), Accuracy, and Ex-Gaussian Parameter
Estimates as a Function of Word Frequency and Nonword Type
(BRONE vs. BRANE) in Experiment 1

Nonword type and word frequency M % error � � �

Words
Legal

High frequency 564 1.7 459 40 105
Low frequency 635 7.0 504 58 131
Frequency effect 71 5.3 45 18 26

Pseudohomophone
High frequency 619 2.1 483 45 136
Low frequency 722 10.4 525 61 197
Frequency effect 102 8.3 42 16 61

Difference of difference (interaction) 31 3.0 �3 �2 35

Nonwords
Legal 679 4.4 551 59 127
Pseudohomophone 783 8.5 588 65 195
Nonword type effect 104 4.1 37 6 68
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47.61, p � .001, MSE � 207.26, 	2 � .42. Neither the main effect
of nonword type nor the interaction was significant (Fs � 1). For
�, the main effects of nonword type, F(1, 66) � 11.72, p � .001,
MSE � 6,776.14, 	2 � .15, and word frequency, F(1, 66) � 86.66,
p � .001, MSE � 743.06, 	2 � .57, were significant. The Non-
word Type � Word Frequency interaction was highly significant,
F(1, 66) � 13.90, p � .001, MSE � 743.06, 	2 � .17, with larger
frequency effects in the PsH condition. Thus, the Nonword
Type � Word Frequency interaction was localized in the �
parameter.

Vincentile analysis. A converging procedure for investigating
the effects of variables on response latencies is to plot the mean
vincentiles for the data. Vincentizing is used to average RT dis-
tributions across a number of participants (Andrews & Heathcote,
2001; Ratcliff, 1979; Rouder & Speckman, 2004; Vincent, 1912;
Yap & Balota, in press) to produce the RT distribution for a typical
participant (see Figure 4 for an example). This approach does not
rely on any prior distributional assumptions and examines the raw
data directly. To carry out vincentizing, one first computes a
predefined number of vincentiles for each participant, where a
vincentile is defined as the mean of observations between neigh-
boring percentiles. For example, to obtain 10 vincentiles, the RT
data for a participant is first sorted (from fastest to slowest re-
sponses), and the first 10% of the data are then averaged, followed
by the second 10%, and so on. Individual vincentiles are then
averaged across participants and plotted. Plots of mean vincentiles
are useful for investigating how different variables influence dif-
ferent regions of the RT distribution and provide a graphical,
complementary perspective to ex-Gaussian analysis. For example,
� effects are reflected in additive changes in the vincentiles along
the y-axis, whereas � effects are reflected in the slowest (rightmost)
vincentiles.

The mean vincentiles for the different experimental conditions
are plotted in Figure 4. As shown here, the frequency effect
increased systematically across vincentiles for both nonword type
conditions. However, if we consider the later, slower vincentiles,
the frequency effect for the PsH nonword condition was markedly
larger than for the legal nonword condition.

Nonword response latencies. For mean response latencies, the
main effect of nonword type was significant, Fp(1, 66) � 12.39,
p � .001, MSE � 14,803.50, 	2 � .16; Fi(1, 199) � 327.44, p �
.001, MSE � 3,619.12, 	2 � .62, with slower nonword responses
to PsHs than to legal nonwords. For accuracy, the main effect of
nonword type was also significant, Fp(1, 66) � 11.81, p � .001,
MSE � 0.0023, 	2 � .15; Fi(1, 199) � 13.17, p � .001, MSE �
0.0083, 	2 � .062, with higher error rates for PsHs than for legal
nonwords.

Turning to the ex-Gaussian parameters, for �, the main effect of
nonword type approached significance, F(1, 66) � 3.67, p � .060,
MSE � 6,187.09, 	2 � .053; � was larger in the PsH condition.
For �, the main effect of nonword type was not significant.
Turning to �, the main effect of nonword type was significant, F(1,
66) � 14.56, p � .001, MSE � 5,293.59, 	2 � .18; � was larger
in the PsH condition than in the legal nonword condition. The
mean vincentiles for nonwords in the different experimental con-
ditions are plotted in Figure 5. An effect of nonword type (i.e.,
faster latencies for legal nonwords compared with PsHs) is appar-
ent across the vincentiles, although the difference between legal
nonwords and PsHs becomes especially pronounced at the slowest
vincentiles.

Discussion

Experiment 1 replicated and extended Stone and Van Orden’s
(1993) Nonword Type � Word Frequency interaction; larger
word-frequency effects are observed when PsHs are used. More
intriguingly, the ex-Gaussian analyses and vincentile plots indi-
cated that this interaction was localized in the exponential com-
ponent (�) of the distribution (see Table 2), suggesting that distri-
butional skewing was responsible for producing the Word
Frequency � Nonword Type interaction in Experiment 1. For
nonwords, the nonword type effect was mediated by both � (to a
lesser extent) and � (to a greater extent), suggesting that both
distributional shifting and, to a greater extent, skewing underlie the
slower nonword responses to PsHs.

Figure 4. Vincentile means of the participants’ word lexical decision response times (RTs; in milliseconds) as
a function of nonword type (legal nonword vs. PsH) and word frequency. PsH � pseudohomophone; HF � high
frequency; LF � low frequency.
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Experiment 2

In the following experiment, we explored a different nonword
contrast. In particular, we compared the word-frequency effect in
the context of illegal nonwords versus the context of legal
nonwords.

Method

Participants. A total of 77 young adults (mean age � 19.1 years, SD �
1.20) participated in this experiment for course credit. All participants had
normal or corrected-to-normal vision and were recruited from the under-
graduate student population of Washington University. The participants
had an average of 12.9 years of education (SD � 0.96) and a mean
vocabulary age of 18.5 years (SD � 0.90) on the Shipley Vocabulary
subtest. Data from 3 of the 77 participants were discarded using the same
multivariate outlier procedure described in Experiment 1. In total, there
were 37 participants in the legal nonword condition and 37 participants in
the illegal nonword condition.

Apparatus. An IBM-compatible computer running E-prime software
(Schneider, Eschman, & Zuccolotto, 2001) was used to control stimulus
presentation and to collect data. The stimuli were displayed on a 17-in.
(43.18-cm) Super VGA monitor, and participants’ responses were made on
a computer keyboard.

Stimuli. The stimuli for the LDT consisted of the 200 words and 200
length-matched pronounceable nonwords used in Experiment 1, as well as
another 200 orthographically illegal nonwords created by permuting the
letters in the pronounceable nonwords. The mean orthographic neighbor-
hood size was higher for legal nonwords (mean N � 3.38) than for illegal
nonwords (mean N � 0.15; p � .001).3 The mean summed bigram
frequency was higher for legal nonwords (5,984.7) than for illegal non-
words (3,346.8).

Procedure. The testing conditions were substantially the same as in
Experiment 1. Participants were presented with 20 practice trials, followed
by five experimental blocks of 80 trials, with mandatory breaks occurring
between blocks. The order in which stimuli were presented was random-
ized for each participant. Stimuli were presented in 14-point Courier font.
Each trial consisted of the following order of events: (a) a fixation point
(�) at the center of the monitor for 400 ms, (b) a blank screen for 200 ms,
and (c) a stimulus centered at the fixation point’s location. The stimulus
remained on screen until a keyboard response was made. Participants
pressed the apostrophe key for words and the A key for nonwords.

Responses were followed by a 1,600-ms delay. If the response was incor-
rect, 450 ms of that 1,600 ms was consumed by a 170-ms tone that was
presented simultaneously with the word Incorrect displayed slightly below
the fixation point.

Design. A 2 � 2 factorial design was used: Nonword type (legal or
illegal) was manipulated between participants, whereas word frequency
(high or low) was manipulated within participant.

Results

Errors (3.5% across both conditions) and response latencies
faster than 200 ms or slower than 3,000 ms were first excluded
from the analyses, and the overall mean and standard deviation of
each participant’s word and nonword latencies were then com-
puted. Response latencies 2.5 standard deviations above or below
each participant’s respective mean latency were removed. These
criteria eliminated a further 2.5% of the lexical decision responses.
ANOVAs were then carried out on the mean, accuracy, and
ex-Gaussian parameters of the word and nonword response time
data (see Table 3).

Response latencies. For the mean response latency data, the
main effect of nonword type, Fp(1, 72) � 21.28, p � .001, MSE �
13,013.35, 	2 � .23; Fi(1, 198) � 963.37, p � .001, MSE �
805.35, 	2 � .83, was significant, as was the main effect of word
frequency, Fp(1, 72) � 115.62, p � .001, MSE � 364.40, 	2 �
.62; Fi(1, 198) � 75.66, p � .001, MSE � 1,845.56, 	2 � .28.
More important, the Nonword Type � Word Frequency interac-
tion was also significant, Fp(1, 72) � 26.02, p � .001, MSE �
364.40, 	2 � .27; Fi(1, 198) � 38.07, p � .001, MSE � 805.35,
	2 � .16, with smaller frequency effects in the presence of illegal
nonwords compared with legal nonwords.

Percentage correct. Turning to the analysis of the accuracy
data, the main effect of nonword type, Fp(1, 72) � 18.20, p �
.001, MSE � 0.0017, 	2 � .20; Fi(1, 198) � 27.51, p � .001,
MSE � 0.0028, 	2 � .12, was significant, as was the main effect
of word frequency, Fp(1, 72) � 59.99, p � .001, MSE � 0.0009,
	2 � .45; Fi(1, 198) � 48.35, p � .001, MSE � 0.0055, 	2 � .20.
The Nonword Type � Word Frequency interaction was also
significant, Fp(1, 72) � 14.67, p � .001, MSE � 0.0009, 	2 � .17;
Fi(1, 198) � 13.82, p � .001, MSE � 0.0028, 	2 � .065, with a
smaller frequency effect observed in the illegal nonword condition
compared with the legal nonword condition.

Ex-Gaussian analyses. The analysis for � yielded main effects
of nonword type, F(1, 72) � 18.26, p � .001, MSE � 4,240.16,
	2 � .20, and word frequency, F(1, 72) � 111.83, p � .001,
MSE � 216.47, 	2 � .61. In contrast to Experiment 1, the
Nonword Type � Word Frequency interaction was significant for
�, F(1, 72) � 22.47, p � .001, MSE � 216.47, 	2 � .24, with
smaller frequency effects in the illegal nonword condition. Turning
to �, the main effect of word frequency was significant, F(1, 72) �
29.71, p � .001, MSE � 108.82, 	2 � .29. Neither the main effect

3 In not matching legal and illegal nonwords on orthographic neighbor-
hood, nonword type effects may be driven by both orthographic legality as
well as orthographic neighborhood. Again, we do not intend to claim that
the observed effects are driven solely by orthographic legality. Our variable
of primary interest is the familiarity of the nonword context, and we think
it is plausible that illegal nonwords are unfamiliar because they are both
orthographically illegal and have few or no neighbors.

Figure 5. Vincentile means of the participants’ nonword lexical decision
response times (RTs; in milliseconds) as a function of nonword type (legal
NW vs. PsH). PsH � pseudohomophone; NW � nonword.
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of nonword type nor the interaction was significant (Fs � 1). For
�, the main effects of nonword type, F(1, 72) � 12.41, p � .001,
MSE � 4,968.36, 	2 � .15, and word frequency, F(1, 72) � 5.42,
p � .023, MSE � 449.68, 	2 � .07, were significant. In contrast
to Experiment 1, the Nonword Type � Word Frequency interac-
tion was not significant ( p � .19) in �.

Vincentile analysis. The mean vincentiles for the different
experimental conditions are plotted in Figure 6. As shown in the
figure, there appears to be a larger frequency effect in the legal
nonword condition compared with the illegal nonword condition
that extends across all vincentiles. This is consistent with the
interactive effects being located primarily in the � component of
the ex-Gaussian analyses.

Nonword response latencies. For mean response latencies, the
main effect of nonword type was significant, Fp(1, 72) � 41.54,
p � .001, MSE � 7,525.80, 	2 � .37; Fi(1, 199) � 1232.06, p �
.001, MSE � 1,442.52, 	2 � .86, with faster nonword responses

when illegal nonwords were used. For accuracy, the main effect of
nonword type was significant, Fp(1, 72) � 16.28, p � .001,
MSE � 0.0009, 	2 � .18; Fi(1, 199) � 13.14, p � .001, MSE �
0.0055, 	2 � .062, with lower error rates when illegal nonwords
were used.

Turning to the ex-Gaussian parameters, for �, the main effect of
nonword type was significant, F(1, 72) � 45.20, p � .001, MSE �
2,447.89, 	2 � .39; � was smaller in the illegal nonword condi-
tion. For �, the main effect of nonword type was not significant.
For �, the main effect of nonword type was significant, F(1, 72) �
16.83, p � .001, MSE � 3,047.56, 	2 � .19; � was smaller in the
illegal nonword condition. The mean vincentiles for nonwords in
the different experimental conditions are plotted in Figure 7.

Discussion

The present results again indicated that as nonwords became
more wordlike, frequency effects became larger. More important,

Figure 6. Vincentile means of the participants’ word lexical decision response times (RTs; in milliseconds) as
a function of nonword type (legal NW vs. illegal NW) and word frequency. NW � nonword; HF � high
frequency; LF � low frequency.

Figure 7. Vincentile means of the participants’ nonword lexical decision
response times (RTs; in milliseconds) as a function of nonword type (legal
NW vs. illegal NW). NW � nonword.

Table 3
Means of Participants’ Mean Lexical Decision Response Times
(in Milliseconds), Accuracy, and Ex-Gaussian Parameter
Estimates as a Function of Word Frequency and Nonword Type
(NBREO vs. BRONE) in Experiment 2

Nonword type and word frequency M % error � � �

Words
Illegal

High frequency 499 1.4 421 39 78
Low frequency 517 3.2 435 48 82
Frequency effect 18 1.8 14 9 4

Legal
High frequency 570 2.4 456 37 114
Low frequency 620 8.0 493 47 127
Frequency effect 50 5.6 37 10 13

Difference of difference (interaction) 32 3.8 23

Nonwords
Illegal 527 2.0 448 46 79
Legal 657 4.7 526 49 132
Nonword type effect 130 2.7 78 3 53
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the distributional analyses yielded the counterintuitive finding that
the distributional characteristics of the Nonword Type � Word
Frequency interaction were modulated by a different component in
this experiment compared with Experiment 1. In Experiment 1,
word-frequency effects were larger in the presence of PsHs com-
pared with legal nonwords, and this interaction was mediated by
the � component. For the nonword foils, nonword type effects
(slower latencies for PsHs) were also mediated more strongly by
the � component (see Table 2). In Experiment 2, word-frequency
effects were larger for the legal nonwords compared with the
illegal nonwords, and the interaction in this case was mediated
primarily by � and, to a lesser extent, by �. For the nonword foils,
nonword type effects (slower latencies for legal nonwords) were
mediated more strongly by the � component (see Table 3). This
intriguing pattern in the underlying distributional characteristics
has never been reported and, as described below, provides a useful
constraint for discriminating between single- and two-stage mod-
els of lexical decision performance. The current modeling en-
deavor is based on correct RTs and does not address error rates or
error latencies. In any case, modeling errors is complicated by two
factors: low error rates and the multiple factors that contribute to
such errors (Balota & Spieler, 1999).

Two-Stage Hybrid Model of Lexical Decision
Performance

Recently, Balota and Spieler (1999) extended the two-stage
model, described earlier, to accommodate the effects of variables
on the shape of RT distributions. So as to understand how the
model captures characteristics of the response latency distribu-
tions, we briefly describe the results of Balota and Spieler’s study,
which manipulated frequency, lexicality, and repetition (repeated
or nonrepeated). Using Figure 2, the predictions for the following
effects are considered in turn: the main effect of frequency, the
Frequency � Repetition interaction, and the Lexicality � Repeti-
tion interaction.

First, consider the main effect of frequency. Low-frequency
words are more likely than high-frequency words to fall under the
region requiring further analysis and hence are more likely to
engage the second slow and attention-demanding process, result-
ing in an RT distribution that is more positively skewed. In
ex-Gaussian terms, this increased skewing is indexed by a larger
exponential component (�). Second, turning to the Frequency �
Repetition interaction, repeating low-frequency words should in-
crease their familiarity and push these items above the high crite-
rion, making these items less likely to undergo the analytic check
process. The distribution of repeated low-frequency words should
therefore produce a smaller � than nonrepeated low-frequency
words. Repeating high-frequency words should modulate � less
because more high-frequency words are already above the high
criterion. Finally, regarding the Lexicality � Repetition interac-
tion, repeated words should produce a decrease in � because these
items are pushed above the high criterion and hence increase the
likelihood of the check process. In contrast, repeated nonwords
should produce an increase in � because these items are pushed
above the lower criterion, subjecting them to more analytic
checking.

The data supported the qualitative predictions made by the
descriptive two-stage model. Balota and Spieler (1999) attempted

to implement a quantitative version of the model. After a few
iterations, they settled on the hybrid model. This model assumes
that Stage 1 (familiarity) item responses are Gaussian in shape,
whereas Stage 1 � Stage 2 (familiarity � check) item responses
are ex-Gaussian in shape. In Stage 1, the familiarity of items
modulates the time to respond in a Gaussian fashion. Items of
intermediate familiarity enter the Stage 2 check process and gen-
erate response times from an ex-Gaussian distribution. In this
article, we test a two-stage model that is identical to the hybrid
model described by Balota and Spieler to account for the Fre-
quency � Repetition and Lexicality � Repetition interactions.

Random-Walk Model of Lexical Decision Performance

As discussed in the introduction, the random-walk model con-
ceptualizes lexical decision as an evidence-accumulating process.
At each time point, a unit of evidence is sampled, and this evidence
is consistent with either a word or nonword response. Over time,
evidence incrementally accrues for both responses but at a greater
rate for the more probable response. When a criterion is reached,
a word or nonword response is emitted. Random-walk finishing
times plus some residual time for encoding and response are
assumed to correspond to behavioral lexical decision times. The
random-walk model instantiated in this article is conceptually
similar to Stone and Van Orden’s (1993) canonical model (see also
Gordon’s, 1983, resonance model) and is in fact identical to the model
explored by Spieler, Balota, and Faust (2000) to accommodate atten-
tional selection performance. The random-walk model is superficially
similar to the counter model (Pike, 1973), which also tallies evidence
for two different responses in separate counters, making a response
when either tally exceeds an absolute criterion (Vickers, 1979). How-
ever, the random-walk model can be distinguished by its adoption of
a relative rather than an absolute response criterion. A response is
emitted only when the evidence for a response exceeds evidence for
the other response by some criterion.

The model contains three parameters. The signal strength is the
probability that the stimulus being processed is consistent with the
response it maps on to, that is, in this case word or nonword. This
parameter reflects the rate of evidence accumulation and is anal-
ogous to the diffusion model’s drift rate. The relative response
criterion is the amount of evidence a particular response must
possess over its competitor before a response can be emitted; this
is analogous to the diffusion model’s boundary separation param-
eter. Finally, the residual time represents the nondecision compo-
nents (i.e., encoding and output) of the response, similar to the
diffusion model’s Ter parameter.

We now turn to which of the two models more adequately
accounts for the novel distributional effects observed in the Ex-
periments 1 and 2.4 To reiterate, the results from Experiment 1
indicated that word-frequency effects were larger for PsHs than for
legal nonwords, and this interaction was mediated almost entirely
by the � component. Nonword type effects for nonwords were
more strongly mediated by �. In Experiment 2, word-frequency
effects were larger for legal than for illegal nonwords, and this

4 For the simulations, we are assuming that the legal nonword condition
is invariant for the two contrasts. Empirically, of course, the legal nonword
conditions in Experiments 1 and 2 yield similar but not identical results.
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interaction was mediated primarily by � and, to a smaller extent,
by �. Nonword type effects for nonwords were more strongly
mediated by �. Of course, in addition to capturing the effects of
the variables on mean RTs, it is also important that the models
accommodate how variables influence RT distributional shape, as
reflected by the �, �, and � parameters.

For the two-stage model, we assumed that as nonwords become
more wordlike, the word–nonword overlap increases and, conse-
quently, discrimination becomes more difficult. We therefore ex-
pect Stage 2 checking for low- and high-frequency words to
increase as nonwords become more wordlike. The hybrid model
contains a check parameter that determines the proportion of
stimuli undergoing the Stage 2 analytic processes. In our simula-
tion (see the Appendix for modeling details), we examined the
distributional characteristics of high- and low-frequency words as
a function of the check parameter. The check parameter was varied
from �2.5 to 2.5 standard deviation units, with more negative
values reflecting greater checking. As checking increases, the
frequency effect in means (top two lines) increases, then decreases
again at very high levels of checking (see Figure 8, top panel).

Turning to the predictions from the two-stage model for the
ex-Gaussian parameters, the � frequency effect becomes larger
then smaller as checking increases. More interesting, checking
strongly modulates the � parameter. When there is little checking,
the � frequency effect is relatively small (see Figure 8, top panel,
bottom two lines). As checking increases, it increases rapidly in
size but becomes nonsignificant at very high levels of checking.
The three vertical lines in the top panel of Figure 8 indicate
possible checking parameters for the different nonword type con-
ditions. For the PsH–legal nonword contrast, we selected two
check parameter values to map onto the two experimental condi-
tions (PsH check � 1.0; legal nonword check � 1.8). Plotting the
model’s predicted values for the two experimental conditions in
Experiment 1 yielded the pattern shown in Table 4. Clearly, this
accommodates the observed interaction nicely, where the larger
frequency effect in the PsH condition is largely mediated by �.
Note, however, that the � parameters for high- and low-frequency
words in Table 2 are smaller in the legal nonword condition,
compared with the PsH condition. The hybrid model predicts the
opposite pattern (compare Tables 2 and 4).

The hybrid model also accounts for the nonword responses in
both experiments. We assumed that more wordlike nonwords, such
as BRANE, are both more familiar and also more likely to undergo
checking. Proceeding on these assumptions, we ran simulations for
the hybrid model (see Figure 8 bottom panel; modeling details are
provided in the Appendix) and plotted the model’s predicted
nonword values for the two experiments (see Tables 4 and 5). As
one can see, nonword type effects for nonwords are more strongly
mediated by � than � when comparing PsHs with legal nonwords
and more strongly mediated by � than � when comparing legal
nonwords with illegal nonwords.

However, the hybrid model is hard pressed to account for the
word results in Experiment 2. Empirically, the frequency effect is
considerably smaller when illegal nonwords are used, and this
attenuation is reflected mainly in �. As shown in Figure 8 (top
panel), the illegal nonword condition is captured by the region to
the left of the legal nonword condition (legal nonword check �
1.8; illegal nonword check � 2.5), where checking is decreased.
At the level of the mean, the model predicts slightly larger fre-

quency effects for the legal nonword condition compared with the
illegal nonword condition (see Table 5). However, the interaction
is mediated by both � and �, instead of being predominantly
localized in �. Furthermore, in Experiment 2, the presence of
illegal nonwords dramatically attenuated word-frequency effects,
especially in �. This trend is not evident in Figure 8, where
word-frequency effects in � remain fairly stable across the differ-
ent levels of checking. Finally, the � parameters for high and
low-frequency words are substantially lower in the illegal nonword
condition, compared with the legal nonword condition; the hybrid
model fails to capture this (compare Tables 3 and 5). Thus, it
appears that the hybrid model is only partially successful in ac-
counting for the Nonword Type � Word Frequency interaction. It
accounts for aspects of the PsH–legal nonword contrast and the
nonword data but is unable to accommodate the legal–illegal
nonword contrast.

At this point, it is worth summarizing why the hybrid model
behaves the way it does and how this allows it to successfully
simulate some but not all of our data. Let us first consider the legal
nonword–PsH contrast in Experiment 1. When PsHs, compared
with legal nonwords, are used, the word–nonword overlap in-
creases, and Stage 2 checking increases. Increased Stage 2 check-
ing, which is reflected by having a greater proportion of item RTs
sampled from an ex-Gaussian distribution, considerably increases
the frequency effect in � but not in �, which explains why the
Nonword Type � Word Frequency interaction is purely mediated
by � when PsHs are compared with legal nonwords. Turning to
Experiment 2, the presence of legal nonwords, compared with
illegal nonwords, also increases checking. For this contrast, how-
ever, checking negligibly increases the size of the frequency effect
in �, which is inconsistent with our finding that the � frequency
effect increases dramatically when legal nonwords, compared with
illegal nonwords, are used (compare Tables 3 and 5). Clearly, the
model tends to localize Stage 2 checking effects in the � compo-
nent and has some trouble when the data, such as the results from
Experiment 2, do not conform to this pattern.

Turning to the random-walk model, we assumed that high-
frequency words start out with higher signal strengths than low-
frequency words. Also, as nonwords become more wordlike, bi-
nary discrimination becomes more difficult, and the signal strength
of both high- and low-frequency words decreases in magnitude
(Ratcliff et al., 2004; Stone & Van Orden, 1993). Using our
instantiation of the random-walk model (see the Appendix for
modeling details), we plotted ex-Gaussian parameters for words
and nonwords as a function of signal strength, with relative re-
sponse criterion and residual time held constant (see Figure 9). The
six experimental conditions are superimposed as vertical lines and
schematically illustrate our predictions. As before, we plotted the
model’s predictions for the six experimental conditions (see Tables
6 and 7). As Tables 6 and 7 make clear, the random-walk model’s
predictions are remarkably consistent with the results we obtained
in the two experiments. First, at the level of the mean, frequency
effects systematically become larger as nonwords become more
wordlike. More intriguingly, for the PsH–legal nonword contrast,
the interaction effect is fully mediated by �, whereas for the
illegal–legal nonword contrast, the interaction is mediated by �
and, to a smaller extent, by �. The random-walk model also
correctly predicts lower � parameters for legal words compared
with PsHs and for illegal words compared with legal words.
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Figure 8. Mean, �, and � estimates from the response time (RT; in milliseconds) distributions of high-
frequency words (HF), low-frequency words (LF), and nonwords (NWs), generated by the hybrid model when
the check parameter is varied. PsH � pseudohomophone.
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The model was slightly less successful in accommodating non-
word responses. Using the diffusion model parameters in Ratcliff
et al. (2004) as a starting point, we made the simplifying assump-
tion that the nonwords in a particular condition had negative signal
strengths that were of similar magnitude to the low-frequency
words in that condition (see Figure 9, bottom panel). Using these
assumptions, we plotted the model’s predicted nonword values for
the two experiments (see Tables 6 and 7). As one can see, nonword
type effects for nonwords are much more strongly mediated by �
than � when comparing PsHs with legal nonwords. However,
nonword type effects are only slightly mediated more by � than �
when comparing legal nonwords with illegal nonwords. Although
the random-walk model’s prediction in this instance is qualita-
tively correct, it would have mimicked the empirical data more
closely (see Table 3) if the difference between � and � were more
pronounced.

Although the nonword simulations reveal some brittleness in
our simple model, the random-walk model generally makes pre-
dictions that are consistent with the counterintuitive empirical
findings, providing evidence that a simple random-walk frame-
work in which only a single parameter is modulated can account
for the effects observed in the two experiments. When we decom-
pose the concave function of the random-walk model into � and �
(see Figure 9), it is clear that as signal strength increases, �
decreases rapidly and curvilinearly whereas � decreases gently
and linearly. In particular, notice how skewed distributions are
when signal strength is low, reflecting long random-walk finishing
times when target–distractor discrimination is difficult. It is inter-
esting to note that for low signal strengths, there is a marked
difference in the slopes for the � and � parameters, with much
steeper gradients for �. As signal strength goes up, the slopes for
the two parameters become increasingly parallel. These trends
suggest that effects that reflect low signal strength processes (e.g.,
PsH vs. legal nonword) show more � involvement than high signal
strength processes, a view that is consistent with our findings.

General Discussion

The present studies generated a number of noteworthy findings.
In two experiments, we replicated the classic Nonword Type �
Word Frequency interaction across two contrasts, showing that
more wordlike nonword contexts produced slower word latencies
and larger word-frequency effects. More important, the use of
distributional analyses afforded evidence that the interactive ef-
fects of nonword context and word frequency were modulated by
different components of the RT distribution. Specifically, when
comparing PsHs and legal nonwords, the Nonword Type � Word
Frequency interaction was mediated totally by the � (exponential)
component. However, when comparing legal and illegal nonwords,
the same interaction was mediated mainly by the � (Gaussian)
component. Qualitatively similar trends were observed with the
nonword data. This pattern of results converged nicely with the
vincentile plots and underscores how distributional analyses can
serve to complement and extend traditional analyses of means.
Differences that were not apparent at the level of the mean
emerged at the level of the distributional analyses, thereby provid-
ing greater leverage in model adjudication.

It is interesting to note that the single-process random-walk
model was able to account for these findings more naturally than
the dual-process hybrid model. Although our simulations did not
support the current instantiation of the hybrid model, they do not
necessarily eliminate two-process models in general. However, if
lexical decisions are indeed mediated by a familiarity-check pro-
cess, then the specific assumptions underlying the current hybrid
model have to be revised to accommodate the present results. One
intriguing possibility is that the two stages map onto two separate
accumulation processes (Diederich, 1997). A familiarity-based
sequential sampling process may begin first, switching subse-
quently to a more strategic–analytic check process. The surprising
finding is that a simple random-walk model can indeed account for
the intriguing distributional changes without making such addi-
tional assumptions. A second possibility is that participants rely on
a qualitatively different type of process when confronted with

Table 5
Means of Hybrid Model’s Mean Lexical Decision Response
Times (in Milliseconds) and Ex-Gaussian Parameter Estimates
as a Function of Word Frequency and Nonword Type (NBREO
vs. BRONE)

Nonword type and word frequency M � � �

Words
Illegal (check � 2.5)

High frequency 500 482 58 18
Low frequency 553 514 53 39
Frequency effect 53 32 �5 21

Legal (check � 1.8)
High frequency 503 464 51 38
Low frequency 564 500 48 64
Frequency effect 61 36 �3 26

Difference of difference (interaction) 8 4 2 5

Nonwords
Illegal (check � �1.5) 464 394 44 70
Legal (check � �0.6) 618 478 41 140
Nonword type effect 154 84 �3 70

Table 4
Means of Hybrid Model’s Mean Lexical Decision Response
Times (in Milliseconds) and Ex-Gaussian Parameter Estimates
as a Function of Word Frequency and Nonword Type (BRONE
vs. BRANE)

Nonword type and word frequency M � � �

Words
Legal (check � 1.8)

High frequency 503 464 51 38
Low frequency 564 500 48 64
Frequency effect 61 36 �3 26

Pseudohomophone (check � 1.0)
High frequency 513 453 48 60
Low frequency 595 493 45 102
Frequency effect 82 40 �3 42

Difference of difference (interaction) 21 4 0 16

Nonwords
Legal (check � �0.6) 618 478 41 140
Pseudohomophone (check � 0.2) 748 533 40 215
Nonword type effect 130 55 �1 75
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illegal nonwords, relying on orthographic regularity in making the
decisions, thereby minimizing lexical processing (as reflected by
the diminished frequency effect). If this is the case, then the illegal
nonword condition may be outside the scope of the two-process
accounts of standard lexical decision processes, because lexical
contributions have been minimized. Again, however, the random-
walk model handles such a pattern without making such additional
assumptions.

How Do Word Recognition Processes Map Onto Signal
Strength–Drift Rate?

The random-walk simulations were carried out with two simple
constraints. First, high-frequency words have larger signal
strengths than low-frequency words. Second, increasing the word-
likeness of nonwords decreases signal strengths for both high- and
low-frequency words. These constraints are analogous to the mod-

Figure 9. Mean, �, and � estimates from the response time (RT; in milliseconds) distributions of high-
frequency words (HF), low-frequency words (LF), and nonwords (NWs), generated by the random-walk model
when the signal strength parameter is varied. PsH � pseudohomophone.
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eling assumptions made by Ratcliff et al. (2004) in their diffusion
model. It is interesting to note that modulating just signal strength,
while holding other parameters constant, was sufficient for mim-
icking the complex pattern of observed distributional effects in the
present experiments. As discussed earlier, signal strength is the
probability that a stimulus is consistent with a particular response
and reflects how rapidly evidence is accumulated. Ratcliff et al. also
reported that variations in drift rate (the analogue of signal strength)
could account for the effects of word frequency and nonword type,
but they only modeled the frequency by legal–illegal nonword inter-
action, which produces effects mainly in �. The present data indicate
that the frequency by legal–PsH interaction is completely modulated
by changes in �. This pattern was also nicely handled by changes in
signal strength in the random-walk model.

If we consider the classic models of word recognition, it is not
obvious why high-frequency words might have higher signal
strengths than low-frequency words. For example, in the classic
logogen model (Morton, 1969), frequency has no influence on the
rate of accumulation of evidence. In this model, a word detector
(logogen) exists for every word in the reader’s lexicon. Each
logogen possesses a preset resting level of activation, and when a
word is presented, the logogen for that word accumulates evidence
until some threshold is exceeded, at which point word recognition
takes place. Notice that word frequency modulates the recognition
threshold of logogens. Because high-frequency words have logo-
gens with lower thresholds, less evidence is required for recogni-
tion. Although the logogen model also assumes that evidence is
accumulated over time, the critical point is that frequency does not
modulate how rapidly that evidence is accumulating.

The classic interactive activation and competition (IAC) model
(McClelland & Rumelhart, 1981) is also built on similar princi-
ples. The model has three processing levels (feature, letter, word)
that are connected to each other by excitatory and inhibitory
pathways, with every relevant unit represented by a node. A visual
input first activates feature-level nodes, sending activation to
letter-level nodes, and then on to word-level nodes, which in turn
sends activation back to letter-level nodes. High-frequency words

start with higher resting levels of activation than low-frequency
words, allowing them to inhibit competitors more rapidly. It is
important to note that the rate of activation increase is determined
mainly by the net input, which is defined as the summed excitatory
and inhibitory influences of neighbors on a node. Despite differ-
ences (e.g., the logogen model is thresholded, the newer models
are not), there is clearly a striking resemblance between the IAC
model and the logogen model; the IAC model has indeed been
described as a “hierarchical, nonlinear, logogen model” (McClel-
land & Rumelhart, 1981, p. 388) with interactivity and dynamical
assumptions built in.

Clearly, the question of how signal strength or drift rate maps
onto word recognition processes is an important one. The work by
Ratcliff et al. (2004) and the findings described in this article
suggest that frequency effects can be explained by variations in
signal strength–drift rate. As the earlier discussion demonstrates, it
is unclear how signal strength–drift rate maps onto the evidence
accumulation processes in the logogen model or the IAC model,
because the former assumes that there are differences in the rate of
stimulus driven activation needed to surpass threshold for high-
and low-frequency words and the latter assumes that high- and
low-frequency words begin with different levels of resting activa-
tion. Obviously, these issues are also relevant to the DRC and
MROM models, which, to a large extent, are built on the IAC
framework. One possibility, suggested by Ratcliff et al., is that
these models generate “wordness” values for incoming stimuli,
and items with stronger lexical representations (i.e., high-
frequency words) enter the lexical decision process with a higher
signal strength–drift rate. Although this account works, it seems
simplistic and assigns an unnecessarily marginal role to word
recognition models.

We believe it is particularly important to consider how
diffusion-type processes can be incorporated within the architec-
ture of extant word recognition models. For example, although the
latest instantiation of the DRC model (Coltheart et al., 2001)
implements the lexical pathway using the IAC model, the activa-
tion dynamics are no longer identical to the IAC assumptions

Table 7
Means of Random-Walk Model’s Mean Lexical Decision
Response Times (in Milliseconds) and Ex-Gaussian Parameter
Estimates as a Function of Word Frequency and Nonword Type
(NBREO vs. BRONE)

Nonword type and word frequency M � � �

Words
Illegal

High frequency 593 534 32 60
Low frequency 611 541 35 70
Frequency effect 18 7 3 10

Legal
High frequency 650 559 43 91
Low frequency 680 576 52 104
Frequency effect 30 17 9 13

Difference of difference (interaction) 12 10 6 3

Nonwords
Illegal 611 541 35 70
Legal 680 576 52 104
Nonword type effect 69 36 18 34

Table 6
Means of Random-Walk Model’s Mean Lexical Decision
Response Times (in Milliseconds) and Ex-Gaussian Parameter
Estimates as a Function of Word Frequency and Nonword Type
(BRONE vs. BRANE)

Nonword type and word frequency M � � �

Words
Legal

High frequency 650 559 43 91
Low frequency 680 576 52 104
Frequency effect 30 17 9 13

Pseudohomophone
High frequency 755 590 57 165
Low frequency 810 605 63 205
Frequency effect 55 15 6 40

Difference of difference (interaction) 25 �2 �3 27

Nonwords
Legal 680 576 52 104
Pseudohomophone 605 63 205 810
Nonword type effect 130 29 11 102
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originally made by McClelland and Rumelhart (1981). Recall that
in the original IAC model, word frequency is implemented by
assigning higher baseline activation levels to nodes for high-
frequency words. In the DRC model, word frequency has been
moved to the equation that governs net input. Because net input
effectively determines how rapidly activation is rising for a lexical
entry, this implies that the activation for high-frequency words
should therefore rise more rapidly than for low-frequency words,
all other factors being equal (Coltheart et al., 2001). This suggests
that there may be a mapping between the activation levels of
entries in the orthographic lexicon and the signal strength–drift
rate of the decision-making mechanism. Here, we describe one
possible account of this mapping.

Specifically, we propose that the decision-making mechanism is
continuously monitoring the activation of representations in the
lexical system. There are actually two indexes within the DRC
framework that could feed the decision-making mechanism. Local
activation refers to the activation of individual lexical representa-
tions, whereas global activation refers to the sum of activations
across lexical representations. Because we are arguing that the
decision-making mechanism is constantly being updated across
time, we believe that global activation is the more likely signal
driving the decision-making mechanism. If local activation were
being used as the stimulus unfolds across time, then the system
would need to monitor each of the activated lexical representations
and track the changes in activation across cycles. Although this is
possible, this may be unnecessarily cumbersome, especially early
in stimulus processing when many lexical candidates are receiving
some activation. Hence, for simplicity, we consider how global
processing could be used by the decision-making mechanism. It is
also important to note here that although global activation includes all
activated representations (e.g., orthographic neighbors) on a given
cycle, it is clearly most influenced by the correct lexical candidate.

How might global activation be directly tied to the random-walk
process to accommodate the present results? As activation is
monitored over successive cycles, evidence is accumulated for the
word response (i.e., value added to the word counter) on each cycle
if the global activation index on the current cycle exceeds the
global activation of the preceding cycle by some minimal amount.
In contrast, if there is little change in global activation from Cycle
N to Cycle N � 1, then evidence is accumulated for a nonword
response (i.e., value added to the nonword counter).5 A word
response is produced when the evidence accumulated in the word
counter exceeds the evidence for the nonword counter by some
threshold. Conversely, a nonword response is produced when the
evidence accumulated for the nonword counter exceeds the evi-
dence for the word counter by some threshold. This account
predicts frequency effects in lexical decision because high-frequency
words possess lexical entries with steeper rates of local activation
(thereby also producing more global activation), which produce evi-
dence for a word response at a more rapid rate across cycles.

It should also be noted that because frequency is represented in
the strength of the connections between nodes within the PDP
architecture of Seidenberg and McClelland’s (1989) and Plaut,
McClelland, Seidenberg, and Patterson’s (1996) models, activa-
tion accumulates at different rates for high-frequency and low-
frequency words, and so this could also be mapped onto drift rate.
Hence, it appears quite reasonable that the more recently devel-
oped computational models of word recognition have parameters

that could accommodate the differences in drift rate for high- and
low-frequency words.

Why Should Nonword Type Influence Drift Rate as
Opposed to Response Criterion?

A conundrum produced by the present results is why changes in
strength–drift rate across nonword contexts capture the distribu-
tional characteristics in the data instead of simple changes in
criteria due to difficulty of the word–nonword discrimination. A
priori, most extant models of word recognition assume that non-
word type influences the response criterion that participants use to
make a word response. Specifically, one would expect participants
to become more conservative (i.e., set a higher criterion before a
response is made) as the nonwords become more similar to words.
In fact, this is precisely the account that Stone and Van Orden
(1993) provided in their original explanation of the Nonword
Type � Word Frequency interaction. As nonwords become more
wordlike (e.g., BRANE vs. BRONE), participants rely on a more
conservative response criterion to make their decisions (see Figure
2). Note that this is conceptually similar to the lexical decision
mechanisms adopted by the DRC and MROM models. As non-
word foils become more wordlike, the summed activation of the
orthographic lexicon is higher on nonword trials, and hence, the
system adopts longer deadlines to avoid premature misses (Colt-
heart et al., 2001). The signal detection framework proposed by
Seidenberg (1990; see also Plaut, 1997) provides complementary
accounts. Because lexical decision involves speeded word–
nonword discrimination, optimal decision criteria have to be es-
tablished that permit fast responses while minimizing error rates.
These criteria may shift depending on the nonword stimuli used in
the task, allowing additional information (e.g., phonological and
semantic) to play a role in the discrimination.

Of course, it is possible that by changing the response criteria
within our random-walk model one could also capture the present
results. We tested this idea with a series of random-walk simula-
tions in which we kept signal strength constant while varying the
response criterion. The results were unambiguous. Altering the
response criterion only influences the � component and has vir-
tually no effect on �, a pattern that was also reported by Spieler et
al. (2000). In general, this is consistent with predictions from
random-walk and diffusion-type models, that is, that shifts in

5 We have conducted DRC simulations with a subset of our stimuli that
confirm that global lexical activity can be used to discriminate between the
words and nonwords used in our experiments. However, it is plausible that
a lexical decision system relying only on global lexical activity may have
problems when it encounters words with few orthographic neighbors and
nonword foils with many orthographic neighbors (M. Coltheart, personal
communication, February 10, 2005). Because global lexical activity is
sensitive to the orthographic neighborhood size of items, it may turn out
that global activations in this situation may be higher for the nonwords than
for the words. We would argue that, under these circumstances, where the
experimenter directly manipulates a variable to work against global acti-
vation, other sources of information (e.g., local lexical activation or evi-
dence from phonology and/or semantics) may play a more prominent role.
It would also be useful to examine the distributional characteristics when
global activation is truly equated across words and nonwords to determine
whether an additional component is evidenced in these distributions.
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criterion primarily shift the RT distribution instead of changing its
shape and hence are primarily reflected in changes in �. However,
this is inconsistent with our data, where we clearly demonstrate
that nonword type influences both � and �, depending on the
difficulty of the discrimination.

In this light, one of the most intriguing questions of the present
results is why nonword type manipulations should modulate the
signal strength of words. After all, participants are responding to
the same set of word stimuli across the different nonword contexts.
Why would evidence accumulate more rapidly for DOG when it is
paired with NBREO than when it is paired with BRANE? It does
not seem reasonable to assume that the rate at which activation
accumulates within a word recognition system built on a lifetime of
experience should be so easily modified by the local nonword context.

One possible way to envisage the influence of nonword type is
to consider the utility of the rate at which activation is accumu-
lating within the word–nonword response systems. In the context
of a difficult discrimination (e.g., in the context of PsHs), a single
unit of information supportive of the word response (i.e., an
increment in global activation between Cycle N and Cycle N � 1)
is less informative than in the context of an easy discrimination
(e.g., in the context of illegal nonwords). Hence, participants may
use the difficulty of the discrimination to differentially weight the
rate of activation within the lexicon. That is, the mapping between
activation rate and signal strength–drift rate is not invariant but
can be modulated by the difficulty of the discrimination process.
When discrimination is easy (e.g., illegal foils), the mapping
between activation and drift rate is weighted more heavily. When
discrimination is difficult (e.g., PsH foils), the mapping between
activation and drift rate is weighted less heavily. How does the
system know whether discrimination is difficult or easy? An
obvious source of information is the global (i.e., summed) lexical
activity produced by nonwords across trials. More wordlike non-
words (e.g., BRANE) produce more global activity. Hence, the
average global lexical activity for nonwords will be higher as
discrimination difficulty increases. This information can then be
used to adjust the weight between local lexical activity and signal
strength–drift rate. It is important to note that because the system
has to apply the same weight to both word and nonword trials, this
explains why illegal nonwords (which should produce a stronger
weight) possess a steeper signal strength–drift rate than PsHs
(which should produce a weaker weight).

All extant models have mechanisms that accommodate discrim-
ination difficulty, and typically these models adjust criteria arbi-
trarily on the basis of such difficulty. Our proposal is that discrim-
ination difficulty, which is influenced by the global activation for
nonwords, modulates the utility of activation rate; this activation
rate is directly available from the output of word recognition
models. To recapitulate, we believe that a plausible account of the
present results is that word–nonword overlap modulates the utility
of the global activation rate for high- and low-frequency words,
and this is reflected in the signal strength parameter within our
random-walk model of the decision process. Very simply, if the
difficulty of the word–nonword discrimination is relatively easy,
then the participant can rely heavily on activation building up in
the lexicon to drive a decision, whereas, in a difficult discrimina-
tion, the activation building up will be relatively less informative
because on some difficult nonword trials (e.g., for PsHs), activa-
tion will be building up at a relatively high rate even though the

stimulus is a nonword. This perspective has clear similarity to
Ratcliff et al.’s (2004) account of lexical decision performance but
more specifically indicates how this might be incorporated within
available word recognition models.

To make our foregoing discussion more concrete, Figure 10
schematically illustrates how signal strength or drift rate vary as a
function of word frequency and nonword context. As one can see,
the rate of evidence accumulation for both words and nonwords
becomes less steep as discrimination difficulty increases. Signal
strength or drift rate also increases for higher frequency words.
The response criteria in this figure represent the relative difference
between the word and nonword accumulators. As noted above, we
would argue that a simple way of connecting this framework to the
DRC–MROM model is to argue that the slope of the drift rates is
modulated by the global activation that accrues across the nonword
trials, which in turn reflects the difficulty of the word–nonword
discrimination. It is clear from Figure 10 that such changes in the
rates modulate the word-frequency effect (as a function of non-
word type) in the predicted fashion.

It is again important to emphasize that there are alternative ways
to accommodate nonword type effects. For example, PDP-class
models use signal detection to carry out lexical decisions, and the
signal can either be orthographic (Seidenberg & McClelland,
1989) or semantic (Plaut, 1997) in nature. Nonword type effects
arise because the model may consult different kinds of information
across different nonword type contexts to optimize performance
(Seidenberg, 1990). For example, consider how words and non-
words differ along several dimensions, any of which can be used
to make a lexical decision. Words tend to have more familiar
orthographic, phonological, and semantic patterns than nonwords.
When orthographically illegal nonwords (e.g., NBREO) are used as
foils, discrimination can be made on the basis of orthographic
information alone. When orthographically legal nonwords (e.g.,
BRONE) are used, either phonology or semantics can reliably be
used to carry out the discrimination because nonwords are not
homophonous with real words. One major limitation of the PDP
approach is that, unlike the DRC and MROM models, PDP models
do not simulate lexical decision response latencies. For example,
both Plaut (1997) and Harm and Seidenberg (2004) simulated
asymptotic lexical decision accuracy rather than RTs (see Rastle &
Coltheart, in press). To properly evaluate PDP models against our
data, it is necessary to address the following two issues. First, how
does nonword type context modulate the type of information
(orthographic, phonological, semantic) that is being recruited to
perform the lexical decision? Second, current PDP models gener-
ate either orthographic or semantic stress as their primary depen-
dent variable. It is as yet unclear how stress values map onto RTs
to produce the observed RT distributions, although Plaut (1997)
has suggested that lexical decision latencies can be modeled by
yoking the signal detection procedure to a diffusion process, with
the assumption that stimuli with stronger signals produce steeper
drift rates. To our knowledge, this has not yet been implemented.

In the foregoing discussion, we have attempted to make contact
with the available models, through consideration of the decision
mechanisms used in binary tasks, and have attempted to tie this to
a general model of the binary decision process. It is still quite
possible that the current effects of nonword type may be accom-
modated by changing response criteria mechanisms, or other
mechanisms, within the available models. In this light, we look
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forward to specific implementations of existing word recognition
models at the level of RT distributions.

Lexical Decision, Nonword Type, and the Effect of
Distinct Codes

As discussed earlier, words and nonwords differ along several
distinct dimensions, any of which can be used to make a lexical
decision. In this light, it is at least plausible that different sources
of information (e.g., orthographic, phonological, and semantic)
contribute to a unidimensional quantity (wordness) that maps onto
signal–drift rate (Ratcliff et al., 2004). Furthermore, it is notewor-
thy that there is evidence that distinct types of information appear
to come online as a function of the word–nonword discrimination
difficulty. For example, James (1975) obtained concreteness ef-
fects when legal nonwords were used but not when illegal non-
words were used. Joordens and Becker (1997) also observed the
strongest semantic priming effects when PsH foils were used,
compared with legal nonwords or illegal nonwords. Similarly,
Waters and Seidenberg (1985) found stronger regularity effects in
lexical decision when orthographically strange words (e.g., AISLE)
were included. These findings reinforce the notion that semantics

or phonology are emphasized when the orthographic code be-
comes less useful for discrimination. Ultimately, such qualitatively
distinct effects as a function of the word–nonword discrimination
are also consistent with the notion that lexical decision latencies
are modulated by a flexible lexical processor (Balota, Paul, &
Spieler, 1999; Balota & Yap, in press), in which local task de-
mands and contexts determine the extent to which attention is
directed toward various lexical processing pathways. Within the
DRM–MROM framework described earlier, such local task de-
mands and contexts could also determine the extent to which local
and global activation contribute toward the random-walk process.

It is indeed intriguing that nonword context modulates both
signal strength and the salience of different stimulus dimensions.
Clearly, signal strength–drift rate are able to provide only a partial
account of lexical decision phenomena. Although it accounts for
behavior (i.e., RT distributions and accuracy) remarkably well, it
makes no predictions about the specific lexical information–
processes that are contributing to the random-walk–diffusion pro-
cess. If indeed a sequential sampling process is the best description
of lexical decision performance, then we believe it is important,
from a psycholinguistic perspective, to develop unified frame-

Figure 10. Signal strength–drift rate as a function of word frequency and nonword type. HF � high-frequency
words; ILL � illegal; nwds � nonwords; LF � low-frequency words; LEG � legal; PsHs � pseudohomo-
phones.
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works that explicitly consider the lexical processing pathways that
are brought online and how these pathways drive drift rate.

Revisiting Single Versus Multiprocess Distinctions
in Models

The present results suggest that the Nonword Type � Word
Frequency interaction is better accommodated by a single-process
model than the complex two-stage hybrid model. Of course, one
must be cautious because we have only tested a single instantiation
of the hybrid model. Moreover, some additional challenges need to
be overcome before a more definitive answer is available. For
example, one could argue that even RT data at the distributional
level may be somewhat limited. Attempting to discriminate be-
tween a single-process and a multiprocess model may well be akin
to discriminating between gradual and all-or-none learning in
quantitative models of learning in the 1960s and 1970s. Specifi-
cally, researchers were interested in whether the rate of learning
was better reflected by a negatively accelerated curve (i.e., learn-
ing is gradual and continuous) or a step function (i.e., learning is
all-or-none). Crowder (1976) elegantly demonstrated how averag-
ing data across participants creates an incremental learning curve
(see Figure 11), regardless of the actual learning function at the
level of the individual participant.

It is at least plausible that the present techniques of averaging
over many trials and participants may indeed smooth potentially
discrete changes in lexical processing. Using only group RT dis-
tributions across many trials, it may not be possible to conclusively
tell whether decision performance is driven by one or two or more
processes. As Estes (2002) argued, more definitive converging
evidence may be uncovered by cognitive neuroscience methods.
For example, it is possible that event-related potential experiments
may reveal dissociations between variables that, in principle,

should selectively influence different stages. Specifically, there
may be spatially and temporally distinct event-related potential
signals that are associated with qualitatively different processing
stages.

Conclusions

In the present article, we used RT distributional analysis to
evaluate two general frameworks for interpreting binary decision
processes, that is, the two-process hybrid model and a simple
random-walk model. The targeted behavioral phenomenon was the
Nonword Type � Word Frequency interaction in lexical decision
performance. We demonstrated that the random-walk model pro-
vided a better account of the observed effects via simple changes
in signal strength. Prima facie, this is consistent with Ratcliff et
al.’s (2004) recent argument that the burden of word recognition
models is to generate drift rates for different experimental condi-
tions and to feed this information into a decision process. Of
course, a model of the decision process is only one target for word
recognition researchers. Ultimately, it is critical to have an under-
standing of the representations and processes that feed into the
drift rates and to consider the interplay among lexical structures,
processes, and decision making.
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Appendix

Implementing the Hybrid Two-Stage Model and the Random-Walk Model

Implementing the Hybrid Two-Stage Model

Determining the Familiarity–Meaningfulness (FM) Values of
Items

First, to determine the FM values of items, we generated a Gaussian
distribution (� � 500, � � 100), and values were sampled from this distri-
bution. The FM value of an item was the algebraic sum of this value and a
boost parameter. If an item’s FM value was above the mean of the Gaussian
distribution (i.e., greater than 500), then the item was assumed to undergo the
Stage 1 (familiarity) processes. If the FM value was below the mean of the FM
distribution (i.e., less than 500), then the item was assumed to undergo Stage
1 � Stage 2 (familiarity � check) processes. In our simulations, the boost
parameters for high- and low-frequency words were set at 36 and –48,
respectively, which affords lower FM values and more checking for low-
frequency words.

Generating Response Times (RTs) for Stage 1
(Familiarity) Processes

Items that undergo Stage 1 produce RTs that were sampled from a Gaussian
distribution of specified � and �. In this stage, the familiarity of items is
assumed to be related to the time needed to respond to them. Higher frequency
words (i.e., more familiar items) produce responses from a Gaussian distribu-
tion with a smaller �. To instantiate this, high-frequency words that enter Stage
1 produce RTs that were sampled from a Gaussian distribution in which � �
500 and � � 60. Low-frequency words, in contrast, were sampled from a
Gaussian distribution in which � � 550 and � � 60.

Generating RTs for Stage 1 � Stage 2 (Familiarity �
Check) Processes

Items that go through both stages produce RTs that were sampled from
an ex-Gaussian distribution of specified �, �, and �. The Gaussian param-
eters (� and �) reflect familiarity-based Stage 1 processes, whereas the
exponential parameter (�) reflects Stage 2 checking processes. High-
frequency words that enter Stage 2 produce RTs that were sampled from an
ex-Gaussian distribution in which � � 500, � � 60, and � � 150. Stage
2 low-frequency words were sampled from an ex-Gaussian distribution in
which � � 550, � � 60, and � � 150.

Simulating Checking

The extent of checking in the model was simulated by manipulating the
proportion of items that undergo Stage 2 processes. This was implemented

by shifting the Gaussian mean (i.e., 500) that FM values are evaluated
against. Checking is increased when the Gaussian mean becomes larger
(more FM values fall below threshold) and is decreased when it becomes
smaller (more FM values fall above threshold).

Convolution of Stage 1 and Stage 2 RTs

To produce the final distribution, we convoluted the RTs for Stage 1
(Gaussian) and Stage 1 � Stage 2 (ex-Gaussian) processes to create a
distribution that is well captured by the ex-Gaussian function. For the
simulations described in this article, 10,000 replicates were used in each
run to generate the targeted distribution.

Simulating Nonword Responses

To simulate nonword responses, we assumed that the different nonword
types varied on familiarity and should therefore be sampled from different
Stage 1 (Gaussian) distributions. Illegal nonword RTs were sampled from
a Gaussian distribution with � � 450 and � � 60, legal nonwords were
sampled from a distribution with � � 550 and � � 60, and pseudohomo-
phones were sampled from a distribution with � � 600 and � � 60.
Nonwords that entered both stages produced RTs that were sampled,
respectively, from an ex-Gaussian distribution with � � 450, � � 60, and
� � 250 (illegal); a distribution with � � 550, � � 60, and � � 250 (legal);
or a distribution with � � 550, � � 60, and � � 250 (pseudohomophone).
We also manipulated the proportion of nonwords undergoing checking and
assumed that greater checking would be present for nonwords that were
more wordlike. The check parameters for illegal nonwords, legal non-
words, and pseudohomophones were set at –1.5, –0.6, and 0.2, respectively
(more positive values imply greater checking).

Implementing the Random-Walk Model

The random-walk model had three parameters: signal strength, relative response
criterion, and residual time. For the simulations described in this article, relative
response criterion and residual time were held constant at 45 units and 400 ms,
respectively. Signal strength alone was varied, and we examined how RT distri-
butional characteristics were modulated by signal strength.

Generating the RT for a Single Trial

To generate the RT for a single trial, incoming evidence is allocated to
a response counter (word or nonword) at each cycle, with each cycle
assumed to have a duration of 1 ms. We implemented this by sampling
from a normal distribution (� � 0, � � 1). If the sampled value was greater

(Appendix continues)
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than some specified criterion from this normal distribution, then a unit of
evidence was allocated to the word response; otherwise, it was allocated to
the nonword response. Signal strength is reflected by the criterion from the
normal distribution that defines whether a randomly selected unit is added
to the word or nonword counter. Greater signal strengths lower the crite-
rion, making it more probable that evidence is allocated to the word
response counter. This process was repeated until the evidence for a
response exceeded its competitor by some specified amount. In our sim-
ulations, the random-walk process terminated when the difference between
the word and nonword response counters exceeded 45 units. The number
of cycles taken to achieve this difference is the decision latency, which was
added to the residual time to produce the overall RT for that trial.

Generating RT Distributions

The description above only produces a single RT. To simulate RT distri-
butions, it is necessary to repeat the process to generate multiple RTs. For our
simulations, we generated 3,000 RTs for each run and fitted the resulting RT

distributions to an ex-Gaussian function. Just as Spieler et al. (2000) observed,
these distributions were well fit by the ex-Gaussian function.

Simulating Nonword Responses

To simulate nonword responses, we assumed that the nonwords in the
three nonword type conditions had negative signal strengths that were of
similar magnitude to the low-frequency words in the respective conditions
(on the basis of diffusion-model parameters in Ratcliff et al., 2004). For
example, in the pseudohomophone condition, if the signal strength of
low-frequency words was 0.548, then we assumed that pseudohomophones
therefore had a signal strength of –0.548. Obviously, this is merely a very
crude first approximation.
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