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Semantic memory entails the enormous store-
house of knowledge that all humans have available.
To begin with, simply consider the information
stored about the words of one’s native language.
Each of us has approximately 50,000 words stored
in our mental dictonary. With each entry, we also
have many different dimensions available. For exam-
ple, with the word ‘dog’ we have stored information
about how to spell it, how to pronounce it, its gram-
matical category, and the fact that the object the word
refers to typically has four legs, is furry, is a common
pet, and likes to chase cats (sometimes cars, squirrels,
and other rodents), along with additional sensory
information about how it feels when petted, the
sound produced when it barks, the visual appearance
of different types of dogs, emotional responses from
past experiences, and much, much more. Of course,
our knowledge about words is only the tip of the
iceberg of the knowledge we have available. For
example, people (both private and public) are a par-
ticularly rich source of knowledge. Consider how
easy it is to quickly and efficiently retrieve detailed
characteristics about John F. Kennedy, Marilyn
Monroe, Bill Clinton, a sibling, parent, child, and so
on. Indeed, our semantic, encyclopedic knowledge
about the world appears limitless.

One concern reflected by the examples above is that
semantic memory seems to be all inclusive. In this
light, it is useful to contrast it with other forms of
memory, and this is precisely what Tulving (1972)
did in his classic paper distinguishing semantic and
episodic memory. According to Tulving, semantc
memory “is a mental thesaurus, organized knowledge
a person possesses about words and other verbal sym-
bols, their meaning and referents, about relations
among them, and about rules, formulas, and algorithms
for the manipulation of these symbols, concepts and
relations” (1972, p. 386). In contrast, episodic memory
refers to a person’s memory for specific events that
were personally experienced and remembered. So,
the memory for the experience of having breakfast
yesterday (e.g., where one was seated, how one felt,
the taste of the food, who one was with) would fall
under the umbrella of episodic memory, but the fact
that eggs, cereal, and toast are typical breakfast foods
reflects semantic knowledge. However, as we shall see,
there is some controversy regarding where episodic
memory ends and semantic memory begins. Indeed,
we would argue that semantic memory penetrates all
forms of memory, even sensory and working memory
(Sperling, 1960; Tulving and Pearlstone, 1966;
Baddeley, 2000), because tasks that are assumed to
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tap into these other types of memory often are influ-
enced by semantic memory.

So, what is indeed unique about semantic memory,
and how has this area of research contributed to our
understanding of learning and memory in general?
One issue that researchers in this area have seriously
tackled is the nature of representation, which touches
on issues that have long plagued the philosophy of
knowledge or epistemology. Specifically, what does it
mean to know something? What does it mean to
represent the meaning of a word, such as DOG? Is it
simply some central tendency of past experiences
with DOGS that one has been exposed to (ie., a
prototype DOG), or is there a limited list of primitive
semantic features that humans use to capture the
meaning of DOG, along with many other concepts
and objects? Is the knowledge stored in an abstracted,
amodal form that is accessible via different routes or
systems, or is all knowledge grounded in specific
modalities?> For example, the meaning of DOG
might be represented by traces laid down by the
perceptual motor systems that were engaged when
we have interacted with DOGs in the past.

In this chapter, we attempt to provide an overview
of the major areas of research addressing the nature of
semantic memory, emphasizing the major themes
that have historically been at the center of research.
Clearly, given the space limitations, the goal here is
to introduce the reader to these issues and provide
references to more detailed reviews. The vast major-
ity of this work emphasizes behavioral approaches to
the study of semantics, but we also touch upon con-
tributions from neuropsychology, neuroimaging, and
computational linguistics that have been quite infor-
mative recently. We focus on the following major
historical developments: (1) the nature of the repre-
sentation, (2) conceptual development and learning,
(3) insights from and limitations of semantic priming
studies, (4) interplay between semantic and episodic
memory tasks, and (5) cognitive neuroscience con-
straints afforded by comparisons of different patient
populations and recent evidence from neuroimaging
studies. For further discussion of this latter area, the
interested reader should see Chapter 2.29.

2.28.1 Nature of the Representation

Although the question of how one represents knowl-
edge has been around since the time of Aristotle, it
is clear that cognitive scientists are still actively
pursuing this issue. One approach to representation

is that we abstract from experience a prototypical
meaning of a concept, and these ideal representations
are interconnected to other related representations
within a rich network of semantic knowledge. This is
the network approach. Another approach is that there
is a set of primitive features that we use to define the
meaning of words. The meanings of different words
and concepts reflect different combinations of these
primitive features. This is a feature-based approach.
Historically, the distinction between these two
approaches has been central to research addressing
the nature of semantic memory.

2.28.2 Network Approaches

One of the first landmark studies of knowledge rep-
resentation came from computer science and was
based on the important dissertation of A. M.
Quillian. Quillian (1968) developed a model of
knowledge representation called the Teachable
Language Comprehender. A goal of this model was
to formulate a working program that allowed effi-
cient access to an enormous amount of information
while minimizing redundancy of information in the
network. Quillian adopted a hierarchically organized
network, a portion of which is displayed in Figure 1.
As shown, there are two important aspects to the
network: nodes and pathways. The nodes in this net-
work are intended to directly represent a concept in
semantic memory, so for example, the word BIRD
has a node that represents BIRDNESS. These nodes
are interconnected in this network via labeled path-
ways, which are either ‘isa’ directional pathways or
property pathways. Specifically, one can verify that
BIRDS are indeed ANIMALS by finding an isa
pathway between BIRDS and ANIMALS. Likewise,
one could verify that ‘A ROBIN BREATHES’ by
finding the isa pathway between robin and bird, and
between bird and animal, and then accessing the
property pathway leading to BREATHES from
ANIMALS. In this sense, the model was quite eco-
nomical, because most properties were stored only at
the highest level in the network in which most of the
lower exemplars included that property. For exam-
ple, BREATHES would only be stored at the
ANIMAL level, and not at the BIRD or CANARY
level, thereby minimizing redundancy (and memory
storage) in the network. Quillian also recognized that
some features may not apply to all exemplars below
that level in the network (e.g, ostriches are birds, and
birds fly), so in these cases, one needed to include a
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Animal

Has wings
Can fly
Has feathers

Has long
thin legs

Can sing s tall

Can'tfly

Ostrich
Is yellow

Canary

Has skin

Can move around
Eats

Breathes

Has fins

Can swim

Has gills

Swims
upstream to
lay eggs

Is pink

Is edible

Can bite

Salmon
Is dangerous

Figure 1 Hierarchically arranged network. Taken from Collins A and Quillian MR (1969) Retrieval time from semantic

memory. J. Verb. Learn. Verb. Behav. 8: 240-247.

special property for these concepts (such as CAN"T
FLY attached to OSTRICHES).

The economy of the network displayed in
Figure 1 does not come without some cost
Specifically, why would one search so deeply in a
network to verify a property of a given concept, that
15, why would one have to go all the way to the
ANIMAL concept to verify that ‘CANARIES
BREATHE’ It seems more plausible that we would
have the property BREATHES directly stored with
the CANARY node. Of course, Quillian was not
initially interested in how well his network might
capture performance in humans, because his goal
was to develop a computer model that would be
able to verify a multitude of questions about natural
categories, within the constraints of precious compu-
ter memory available at the time.

Fortunately for cognitive psychologists, Quillian
began a collaboratve effort with A. Collins to test
whether the network model developed by Quillian
could indeed predict human performance on a sen-
tence verification task, that is, the speed to verify
such sentences as ‘A CANARY IS A BIRD.
Remarkably, the Collins and Quillian (1969) study
provided evidence that appeared to be highly sup-
portive of the hierarchically organized network
structure that Quillian independently developed in
artificial intelligence. Specifically, human perfor-
mance was nicely predicted by how many ‘isa’ and

‘property’ pathways one needed to traverse to verify
a sentence. The notion is that there was a spreading
activation retrieval mechanism that spread across
links within the network, and the more links tra-
versed the slower the retrieval time. So, the original
evidence appeared to support the counterintuitive
prediction that subjects indeed needed to go through
the ‘CANARY IS A BIRD’ link and then the ‘BIRD
IS AN ANIMAL’ link to verify that ‘CANARIES
BREATHE’, because this is where BREATHES is
located in the network.

The power of network theory to economically
represent the relations among a large amount of infor-
mation and the confirmation of the counterintuitive
predictions via the sentence verificaton studies by
Collins and Quillian (1969) clearly encouraged
researchers to investigate the potential of these net-
works. However, it soon became clear that the initial
hierarchically arranged network structure had some
limitations. For example, the model encountered
some difficulties handling the systematic differences
in false reaction times, that is, the finding that correct
‘false’ responses to ‘BUTTERFLIES ARE BIRDS’ are
slower than responses to ‘SPIDERS ARE BIRDS’
Importantly, there was also clear evidence of typical-
ity effects within categories. Specifically, categories
have graded structure, that is, some examples of
BIRD, such as ROBINS, appear to be better examples
than other BIRDS, such as OSTRICHES.
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There were numerous attempts to preserve the
basic network structure of Collins and Quillian
(1969), and indeed, some general models of cognitive
performance still include aspects of such network
structure. Collins and Loftus (1975) took a major
step forward when they developed a network that
was not forced into a hierarchical framework. This is
displayed in Figure 2. As shown, these networks are
basically unstructured, with pathways between con-
cepts that are related and the strength of the
relationship being reflected by the length of the path-
ways. Collins and Loftus further proposed that the
links between nodes could be dependent on semantic
similarity (e.g., items from the same category, such as
DOG and CAT, would be linked), or the links could
emerge from lexical level factors, such as cooccur-
rence in the language. Thus, DOG and CAT would
be linked because these two items often occur in
similar contexts. Because the strength of spreading
activation 1s a function of the distance the activation
traversed, typicality effects can be nicely captured in
this framework by the length of the pathways. Of
course, one might be concerned that such networks
are not sufficiently constrained by independent evi-
dence (ie, if one is slow the pathway must be long).
Nevertheless, such networks have been implemented

Figure 2 Semantic network. From Collins AM and Loftus
EF (1975) A spreading-activation theory of semantic
processing. Psychol. Rev. 82: 407-428.

to capture knowledge representation in both seman-
tic and episodic domains (see Anderson, 2000).

More recently, there has been a resurgent interest
in a type of network theory. Interestingly, these
developments are again driven from fields outside
of psychology such as physics (see Albert and
Barabasi, 2002) and biology (Jeong et al, 2000).
This approach is very principled in nature in that it
uses large existing databases to establish the connec-
tions across nodes within a network and then uses
graph analytic approaches to provide quantitative
estimates that capture the nature of the networks. In
this light, researchers are not arbitrarily constructing
the networks but are allowing the known relations
among items within the network to specify the struc-
ture of the network. This approach has been used to
quantify such diverse networks as the power grid of
the Western United States and the neural network of
the worm, C. elegans (Watts and Strogatz, 1998). Once
one has the network established for a given domain
(ie., providing connections between nodes), one can
then quantify various characteristics of the network,
such as the number of nodes, the number of path-
ways, the average number of pathways from a node,
and the average distance between two nodes.
Moreover, there are more sophisticated measures
available such as the clustering coefficient, which
reflects the probability that two neighbors of a ran-
domly selected node will be neighbors of each other.
In this sense, these parameters quantify the charac-
teristics of the targeted network. For example, when
looking at such parameters, Watts and Strogatz
(1998) found that naturally occurring networks have
a substantially higher clustering coefficient and
relatively short average distances between nodes
compared with randomly generated networks that
have the same number of nodes and average connec-
tivity between nodes. This general characteristic of
networks is called ‘small world’ structure. These high
clustering coefficients may reflect ‘hubs’ of connec-
tivity and allow one to access vast amounts of
information by retrieving information along the
hubs. In popular parlance, such hubs may allow one
to capture the six degrees of separation between any
two individuals that Milgram (1967) proposed and
that has been popularized by the game “six degrees of
separation with Kevin Bacon”.

What do worms, power grids, and parlor games
have to do with semantic memory? Steyvers and
Tenenbaum (2005) used three large databases reflect-
ing the meaning of words to construct networks of
semantic memory. These included free-association
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norms (Nelson et al., 1998), WordNet (Miller, 1990),
and Roget’s Thesaurus (1911). For example, if sub-
jects are likely to produce a word in response to
another word in the Nelson et al. free-association
norms, then a connection between the two nodes
was established in Interestingly,
Steyvers and Tenenbaum found that these semantic
networks exhibited the same small world structure as
other naturally occurring networks; specifically, high-
clustering coefficients and a relatively small average
path distance between two nodes. As shown in
Figure 3, if one moves along the hub of highly inter-
connected nodes, an enormous amount of information
becomes readily available via traversing a small num-
ber of links.

Of course, it is not a coincidence that naturally
occurring networks have small world structure. The
seductive conclusion here is that knowledge repre-

the network.

sentation has some systematic similarities across
domains. Indeed, Steyvers and Tenenbaum (2005)
and others have suggested that such structure reflects
central principles in development and representation
of knowledge. Specifically, Steyvers and Tenenbaum
argue that as the network grows, new nodes are
predisposed to attach to existing nodes in a probabil-
istic manner. It is indeed quite rare that a new
meaning of a word is acquired without it being
some variation of a preexisting meaning (see Carey,

COMFORTABLE
RECLINER
SLEEP
HULA

CRATER
HAWAII

VOLCANO ISLAND

LAVA

ERUPT

1978). Hence, across time, nodes that are added to the
network will be preferentally attached to existing
nodes. This will give rise to a high degree of local
clustering, which is a signature of small world net-
work structure. We return to the issue of how
concepts develop in a later section.

It is noteworthy that Steyvers and Tenenbaum
(2005) have also provided empirical support from
their network analyses. For example, they have
found that word frequency, or the degree to which a
word is encountered in language, and age of acquisi-
tion, defined as the average age at which a child learns
a given word, effects in naming and lexical decision
performance naturally fall from this perspective.
Naming and lexical decision are two of the most
commonly used word recognition tasks used in
research investigating the nature and structure of
semantic memory. In naming (or speeded pronuncia-
tion), a participant is asked to read a presented
stimulus aloud as quickly as possible, whereas in
lexical decision, he or she is asked to indicate whether
a letter string is a real word or a pseudoword (ie, a
string of letters that does not correspond to the spel-
ling of a real word). In both tasks, the primary
dependent measure is response latency. The general
assumption is that the speed required to access the
pronunciation of a word or to recognize a string of
letters reflects processes involved in accessing stored

HEAD ACHE
EASE PAIN
COMFORT S OMACH
TENSE SOOTHE HURT

MASSAGE

CALM

VACATION

SUN

Figure 3 Segment of small world semantic network. Courtesy of Marc Steyvers.
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knowledge about that word. Interestingly, Steyvers
and Tenenbaum found a reliable negative correlation
between number of connections to a node (semantic
centrality) in these networks and response latency,
precisely as one might predict, after correlated vari-
ables such as word frequency and age of acquisition
have been partialed out (also see Balota et al,, 2004).
Clearly, further work is needed to empirically con-
firm the utility of these descriptions of semantic
structure and the mechanisms by which such net-
works develop over time. However, the recent graph
analytic procedures have taken a significant step
toward capturing semantic memory within an empiri-
cally verified network.

2.28.3 Feature Analytic Approaches

An alternative to concepts being embedded within a
rich network structure is an approach wherein mean-
ing is represented as a set of primitive features that
are used in various combinations to represent differ-
ent concepts. Of course, this issue (distributed
representation of knowledge, by way of features, vs.
a localist representation, via a node to concept rela-
tionship) is central to attempts to represent and
quantify learning and memory in general. We now
turn to a review of the feature-based approaches in
semantic memory.

The original Collins and Quillian (1969) research
generated a great deal of attention, and soon research-
ers realized that categories reflected more graded
structures than was originally assumed. Specifically,
some members of categories are good members
(ROBIN for BIRD), whereas other members appear
to be relatively poor members (VULTURE for
BIRD) but are still definitely members of the category
(see Battig and Montague, 1969; Rosch, 1973). In
addition, there was a clear influence of goodness of
an exemplar on response latencies in the sentence
verification task described above. Specifically, good
exemplars were faster to verify than poor exemplars,
referred to as the typicality effect. The Collins and
Quillian hierarchical network model did not have any
obvious way of accommodating such degrees of cate-
gory membership.

Smith et al. (1974) took a quite different approach
to accommodate the results from the sentence ver-
ification task. They rejected the strong assumptions
of network theory and proposed a model that empha-
sized the notion of critical semantic features in
representing the meaning of a word. So, for example,

the word BIRD might be represented as animal, two
legged, has wings, sings, is small, flies, and so on.
There is no hierarchical organization within this
model, but concepts reflect lists of critical features.
They also distinguished between two classes of fea-
tures, defining features and characteristic features.
Defining features are the necessary features that an
exemplar must have to be a member of a category. So,
for example, all birds must eat, move, lay eggs, and so
forth. On the other hand, characteristic features are
features that most, but not all, exemplars have, such
as small, flies, sings.

The second important aspect of the Smith et al.
(1974) perspective is the emphasis on the decision
processes engaged in the classic sentence verifica-
tion task (see Atkinson and Juola, 1974; Balota and
Chumbley, 1984, for similar decision models applied
to short-term memory search and lexical decision,
respectively). In verifying a sentence such as ‘A
ROBIN IS A BIRD, subjects first access all (both
defining and characteristic) features associated with
ROBIN and all features associated with BIRD. If
there is a high degree of overlap in the features,
that 1s, above some criterion, the subject can make a
fast ‘yes’ response. This would be the case in ‘A
ROBIN IS A BIRD, since both defining and char-
acteristic features provide a high degree of overlap.
On the other hand, some exemplars of a given cate-
gory may overlap less in characteristic features such
asin ‘AN OSTRICH IS A BIRD’. Although ostriches
are clearly birds, they are not small and do not fly,
which are characteristic features of birds. Hence, in
such cases, the subject needs to engage in an addi-
tional analytic checking process in which only the
defining features are compared. This additional
check process takes time and so slows response laten-
cies. Hence, the model can naturally capture the
typicality effects mentioned above, that is, robins
are better exemplars of birds than ostriches, because
robins can be verified based on global overlap in
features, whereas ostriches must engage the second,
more analytic comparison of only the defining fea-
tures, thereby slowing response latency.

In addition to accounting for typicality effects, the
feature analytic model also captured interesting dif-
ferences in latencies to respond ‘no’ in the sentence
verification task. Specifically, subjects are relatively
fast to reject ‘A CARP IS A BIRD’ compared with ‘A
BUTTERFLY IS A BIRD.” Carps do not have many
overlapping features with birds, and so the subject
can quickly reject this item, that is, there is virtually
no overlap in features. However, both butterflies and
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birds typically have wings, are small, and fly. Hence,
the subject must engage the additional check of the
defining features for ‘BUTTERFLY IS A BIRD,
which ultimately leads to slower response latencies,
compared with the sentence ‘A CARP IS A BIRD.

Although there were clear successes of the Smith
et al. (1974) feature analytic approach, there were
also some problems. For example, the model was
criticized for the strong distinction between charac-
teristic and defining features. In fact, McCloskey and
Glucksberg (1979) provided a single process random
walk model that accommodated many of the same
results of the original Smith et al. model without
postulating a distinction between characteristic and
defining features. According to the random walk
framework, individuals sample information across
tme that supports either a yes or no decision. If the
features from the subject and predicate match, then
movement toward the yes criterion takes place; if the
features do not match, then movement toward the no
criterion takes place. This model simply assumed
that the likelihood of sampling matching feature
information for the subject and predicate is greater
for typical members than nontypical members, and
therefore the response criterion is reached more
quickly for typical than nontypical members, thus
producing the influence on response latencies. The
distinction between single- and dual-process models
1s a central issue that pervades much of cognitive
science.

A second concern about the Smith et al. (1974)
model is that they did not directly measure features
but, rather, inferred overlap in features based on
muludimensional scaling techniques, in which an
independent group of subjects simply rated the simi-
larity of words used in the sentence verification
experiment. In this way, one could look at the simi-
larity of the words along an N-dimensional space.
Interestingly, Osgood et al. (1957) used a similar
procedure to tackle the meaning of words in their
classic work on the semantic differential. Osgood
et al. found that when subjects rated the similarity
across words, and these similarity ratings were sub-
mitted to multidimensional scaling procedures, there
were three major factors that emerged: Evaluative
(good—bad), potency (strong—weak), and activity
(active—passive). Although clearly this work is pro-
vocative, such similarity ratings do not provide a
direct measure of the features available for a concept.
So, if there are indeed primitive features, it seems
necessary to attempt to more directly quantify these
features.

McRae and colleagues have been recently
attempting to provide such constraints on feature
analytic models (McRae et al, 1997; Cree et al,
1999; Cree and McRae, 2003; McRae, 2004; McRae
et al, 2005). The goal here is to develop a feature-
based computational model implemented in an
attractor network capable of capturing the statistical
regularities present in semantic domains. The gen-
eral notion underlying attractor network models is
that knowledge 1s distributed across units (which
might be thought of as features) and that the network
settles into a steady pattern of activity that reflects
the representation of a concept. The conceptual
representations that form the basis of semantic
knowledge in the model are derived from feature
norming data. To collect norms, groups of partici-
pants are asked to list features for a number of
concepts (e.g, for DOG, participants might list
BARKS, FURRY, CHASES CATS, etc.). McRae and
colleagues propose that when participants are asked to
list features of various basic-level category exemplars
(e.g, DOG and APPLE are basic-level concepts from
the superordinate category of MAMMALS and
FRUIT, respectively), the resulting lists of features
reflect the explicit knowledge people have of these
concepts. Importantly, McRae does not claim that the
nature of the representation consists of a feature list;
rather, he argues, the features are derived from
repeated multisensory interactions with exemplars of
the concept, and in a feature listing task, subjects
temporarily create an abstraction for the purpose
of listing features that can be verbally described.
Currently, feature norming data are available for 541
concrete objects, representing a wide variety of basic-
level concepts. Importantly, the model can account for
many empirical observations in semantic tasks, as dis-
cussed below.

The major assumption implemented by McRae
and colleagues’ model is that semantic knowledge,
as represented by feature lists, involves the statistical
averaging of feature correlations among members of
similar categories. Features are correlated if they co-
occur in basic-level concepts. For example, HAS
FUR is highly correlated with HAS FOUR LEGS,
as these two features cooccur in numerous exemplars
of the mammal category. However, HAS FUR and
HAS WINGS have a low (almost nonexistent) cor-
relation, as these two features do not co-occur
frequently. The argument is that individuals are
highly sensitive to the regularity of the correlations,
which are tapped by semantic tasks. As demonstrated
by McRae et al. (1999), the strength of the feature
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correlations predicted feature verification latencies in
both human subjects and model simulations, with
stronger correlations yielding faster response latencies
than weaker correlations when the concept name was
presented before the feature name (e.g, DOG-FUR).
In addition, the correlation strength interacted with
stimulus onset asynchrony (the time between the
onset of the concept name and the onset of the feature
name, SOA). Specifically, the effect of feature correla-
tions was larger at shorter SOAs, with only high
correlations predicting response latencies. However,
at longer SOAs, even weakly correlated features influ-
enced response times, indicating that, as more time
was allowed for the effects of correlated features to
emerge, even the more weakly correlated feature-
concept pairs benefited from the shared representa-
don. In another series of studies, McRae et al. (1997)
reported that the strength of feature correlations pre-
dicted priming for exemplars from the living things
domain but not for exemplars from nonliving things
domains, for which priming was instead predicted by
individual features. This finding is consistent with
evidence that, compared to living things, nonliving
things tend to have a lower degree of correlated
features (also see section 2.28.8.1).

Several interesting extensions of McRae and col-
leagues’ work on the role of features in organizing
semantic knowledge have been recently reported.
Pexman et al. (2002) examined the role of the number
of features associated with a concept and found that
items with more features were responded to faster in
both naming and lexical decision tasks after a number
of other variables known to influence visual word
recognition latencies had been factored out. Pexman
et al. (2003) reported similar results in a semantic
categorization task and in a reading task. These find-
ings were interpreted as supporting the distributed
nature of semantic representations in which features
are assumed to reflect access to conceptual knowl-
edge, and this information quickly comes on line in
isolated word recognition tasks.

In a related vein, there is recent evidence from the
categorization literature that categories with richer
dimensionalities (i.e., more features and more corre-
lations among features) are easier to learn than
categories with fewer dimensions (Hoffman and
Murphy, 2006). Thus, rather than resulting in com-
binatorial explosions that make learning impossible,
rich categories with many features lend themselves
well to learning — a finding that is nicely mirrored in
how people, even very young children, quickly and
reliably learn to recognize and classify objects in the

world. Indeed, it seems that learning to categorize
complex objects, which might be quite similar in
terms of features, is something most individuals can
do reliably and easily. One concern that arises when
one examines the richness of the stimuli in the envi-
ronment, is the potentially infinite number of
features that are available to identify a given concept.
In fact, critics of feature-based models have argued
that the number of possible feature combinations
would result in combinatorial explosion, as knowing
even a few features of a category could easily result in
an enormous number of ways in which the features
could be correlated and integrated (see Murphy,
2002, for a discussion). However, as McRae (2004)
notes, two points are relevant in addressing this issue.
The first is that the feature correlations tend to
influence performance largely in implicit tasks —
thus reducing the necessity of explaining how an
individual can explicitly use the vast amount of
information available. The second point is that the
feature vectors that underlie semantic representa-
tions are generally sparse. In other words, the
absence of a specific feature is uninformative, so, for
example, knowing that a dog does not have feathers is
relatively uninformative. Thus, although feature-
based models might not fully capture the richness
of the knowledge that individuals have about con-
cepts, they have been useful in advancing research in
the field of semantics.

2.28.4 Concept Learning and
Categorization

Since semantic memory deals with the nature of
representation of meaning, and categories are central
to meaning, it is important to at least touch on the
area of categorization and how concepts develop. In
their classic book, Bruner et al. (1956) emphasized the
importance of categorization in organizing what
appears to be a limitless database that drives complex
human learning and thought. Categorization has
been viewed as a fundamental aspect of learning
and indeed has been observed early in childhood
(Gelman and Markman, 1986) and in other species
such as pigeons (Herrnstein et al, 1976). Ross (See
Chapter 2.29) provides a much more focused discus-
sion of this topic.

One intriguing question that arises when one con-
siders the content of semantic memory concerns the
grain size and structure of the representations. In
other words, is there a level at which objects in the
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real world are more or less easy to learn and categor-
ize? One possibility is that the world is initally
perceived as a continuum in which there are not
separate ‘things” Through repeated interactions
with verbal labels or other forms of learning, an
individual learns how to discriminate separate objects
(e.g., Leach, 1964). This approach places the burden
on an extensive and demanding learning process. An
alternative approach is that the human cognitive
system is ideally suited to detect and recognize
objects at a specific grain or level. The assumption
that the system is biased toward recognizing specific
patterns implies that the process of learning the
appropriate verbal labels that refer to specific items
in the environment is significantly easier. This prob-
lem — how very young children learn that when their
mother points to a dog and says ‘dog’ the referent of
the phonological pattern in question refers to an
entire object, and not to furry things, things of a
certain color, or loosely attached dog parts — has
been extensively discussed by Quine (1960).

In an elegant series of experiments, Rosch and
colleagues (e.g,, Rosch et al,, 1976) provided empirical
evidence that there is indeed a specific level at which
categories of objects are represented that contains the
most useful amount of information. For example,
identifying a given object as a DOG implies that one
recognizes that the specific exemplar is a dog,
although it may differ from other dogs one has
encountered. Simply knowing something is a dog
allows one to draw upon a pool of stored knowledge
and experiences to infer appropriate behaviors and
interactions with the categorized object. However,
knowing the object is an animal is not as informative,
given the wide variability among animals. For exam-
ple, interactions with an elephant are likely to be quite
different from those one might have with a spider.
Conversely, classifying the exemplar as a Collie or as
a German Shepherd does not add a significant amount
of inferential power for most purposes.

Rosch et al. (1976) argued that at the basic level,
categories are highly informative and can be reliably
and easily discriminated from other categories.
Exemplars of basic-level categories (e.g, DOGS,
BIRDS, CARS, etc.) have many attributes in com-
mon, tend to be similar in shape and in how one
interacts with them, and allow easy extraction of a
prototype or summary representation. The prototype
can be accessed and serves as a benchmark against
which novel exemplars can be compared: Those that
are highly similar to the prototype will be quickly
and easily classified as members of the category.

Exemplars that differ from the prototype will be
recognized as less typical members of a category
(e.g, penguins are quite different from many other
birds). Hence, typicality effects fall quite nicely from
this perspective.

Historically, there has again been some tension
between abstract prototype representation and more
feature-based approaches. Consider the classic work
by Posner and Keele (1968). Although cautious in
their interpretation, these researchers reported evi-
dence suggesting that prototypes (in this case a
central tendency of dot patterns) were naturally
abstracted from stored distortions of that prototype,
even though the prototype was never presented for
study. They also found that variability across a suffi-
cient number of distortions was critical for abstracting
the prototype. These results would appear to support
the notion that there is a natural tendency to abstract
some representation that is a central tendency of
exemplars that share some common elements. So,
‘dogness’ may be abstracted from the examples of
dogs that one encounters. This could suggest that
there is indeed a unified representation for dogness.

An alternative approach is that there is nothing
unique about these central tendencies but, rather,
such representations reflect the similarity of the epi-
sodically stored representations in memory. This is a
particularly important observation because it sug-
gests that there is a blending of different types of
memories, that is, categorical information is simply
decontextualized episodic memories. Consider, for
example, the classic MINERVA model developed
by Hintzman (1986, 1988). In this computational
model, each episodic experience lays down a unique
trace in memory, which is reflected by a vector of
theoretical features. There is no special status of
category representations or hierarchical structure.
Rather, categorization occurs during retrieval when
a probe (the test item) is presented to the system, and
the feature vector in the probe stumulus is correlated
with all the episodically stored traces. The familiarity
of a test probe is a reflection of the strength of the
correlations among elements in memory. Because the
schema overlaps more with multiple stored represen-
tations, that is, it is the central tendency, it will
produce a relatively high familiarity signal or
strength in a cued recall situation. The importance
of the Hintzman approach is that there is no need to
directly store central tendencies, as they naturally
arise out of the correlation among similar stored
traces in the feature vectors. Moreover, as
Hintzman argues, there is no need to propose a
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qualitative distinction between episodic and semantic
memories, because both rely on the same memory
system, that is, a vast storehouse of individual fea-
ture-based episodic traces.

The notion that categories are a reflection of
similarity structure across memory traces and can
be generated during retrieval clearly has some
appeal. Indeed, Barsalou (1985) demonstrated the
importance of ad hoc categories that seem to be easily
generated from traces that do not inherently have
natural category structure; for example, what do
photographs, money, children, and pets have in com-
mon? On the surface, these items do not appear to be
similar — they do not belong to the same taxonomic
category, nor do they share many features. However,
when given the category label “things to take out of
the house in the case of a fire,” these items seem to fit
quite naturally together because our knowledge base
can be easily searched for items that are in the house
and are important to us. As Medin (1989) has argued,
similarity depends on the theoretical frame that a
participant uses to guide a search of memory struc-
tures. There appears to be an unlimited number of
ways in which similarity can be defined, and hence
similarity discovered. For example, lichen and squir-
rels are similar if one is interested in specifying things
in a forest. This brings us to the remarkable context
dependency of meaning, and the possibility that
meaning is not defined by the stimulus per se but is
a larger unit involving both the stimulus and the
surrounding context. The word DOG in the context
of thinking about house pets compared with the word
DOG in the context of guard dogs or drug-sniffing
dogs probably access quite different interpretations,
one in which the focus is on companionship, furri-
ness, and wagging tails, the other in which the more
threatening aspects of dogness, such as sharp teeth,
are accessed. One might argue that the context acti-
vates the relevant set of features, but even this is
difficult untl one has sufficient constraint on what
those features actually are.

2.28.5 Grounding Semantics

In part because of the difficulties in defining the
critical features used to represent meaning and
potential problems with the tractability of prototypes
of meaning, several researchers attempted to take
novel approaches to the nature of the representations.
There are two general approaches that we review in
this section. First, because of the increase in

computational power, there has been an increased
reliance on analyses of large-scale databases to extract
similarities across the contexts of words used in var-
1ous situations. This perspective has some similarity to
the exemplar-based approach proposed by Hintzman
(1986, 1988) and others described earlier. In this sense,
meaning is grounded in the context in which words
and objects appear. The second approach is to con-
sider the perceptual motor constraints afforded by
humans to help ground semantics, that is, the embo-
died cognition approach. We review each of these
in turn.

2.28.5.1 Grounding Semantics in Analyses
of Large-Scale Databases

This approach attempts to directly tackle the poverty
of the stimulus problem when considering the knowl-
edge that humans have acquired. Indeed, since the
days of Plato, philosophers (and more recently psy-
chologists and linguists) have attempted to resolve
the paradox of how humans can acquire so much
information based on so little input. Specifically,
how is it that children learn so much about the
referents of words, when to use them, what their
syntactic class is, what the relations among referents
are, and so on, without explicit instruction? Some
have argued (e.g, Pinker, 1994) that the poverty of
the stimulus is indeed the reason one needs to build
in genetically predisposed language acquisition
devices. However, recent approaches to this issue
(e.g, Latent Semantic Analysis, or LSA, Landauer
and Dumais, 1997; Hyperspace Analogue to
Language, or HAL, Burgess and Lund, 1997) have
suggested that the sumulus input is not so impover-
ished as originally assumed. One simply needs more
powerful statistical tools to uncover the underlying
meaning and the appropriate database.

In an attempt to better understand how rich the
stimulus is when embedded in context, Landauer and
Dumais (1997) analyzed large corpora of text that
included over 4.6 million words taken from an
English encyclopedia, a work intended for young
students. This encyclopedia included about 30000
paragraphs reflecting distinct topics. From this, the
authors constructed a data matrix that basically
included the 60000 words across the 30000 para-
graphs. Each cell within the matrix reflected the
frequency that a given word appeared in a given
paragraph. The data matrix was then submitted to a
singular value decomposition, which has strong sim-
ilarities to factor analysis to reduce the data matrix to
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a limited set of dimensions. Essentially, singular
value decomposition extracts a parsimonious repre-
sentation of the intercorrelations of variables, but,
unlike factor analysis, it can be used with matrices
of arbitrary shape in which rows and columns repre-
sent the words and the contexts in which the words
appear. In this case, the authors reduced the matrix to
300 dimensions. These dimensions reflect the inter-
correlations that arise across the words from the
different texts. So, in some sense the 300 dimensions
of a given word will provide information about the
similarity to all other words along these 300 dimen-
sions, that is, the degree to which words co-occur in
different contexts. The exciting aspect from this data
reduction technique is that by using similarity esti-
mates, the model actually performs quite well in
capturing the performance of children acquiring lan-
guage and adults’ performance on tests based on
introductory textbooks. In this way, the meaning of
a word is being captured by all the past experiences
with the word, the contexts with which that word
(neighbors) occurs, the contexts that the neighbors
occur in, and so on.

The remarkable success of LSA, and other similar
approaches such as HAL (Burgess and Lund, 1997),
provides a possible answer to the poverty of the
stimulus problem, that is, when considering the con-
text, the stimulus is indeed very rich. In the past, we
simply have not been able to analyze it appropriately.
Moreover, the model nicely captures the apparent
contextual specificity of meaning in that meaning is
defined by all the contexts that words have appeared
in and hence will also be constantly changing ever so
slightly across subsequent encounters. Finally, the
model is indeed quite important because it does not
rely on a strong distinction between semantic and
episodic memory since it simply reflects past accu-
mulated exposure to language. In this sense, it has
some similarity to the Hintzman (1986) model
described above.

2.28.5.2 Grounding Semantics in
Perceptual Motor Systems

An alternative approach that has been receiving con-
siderable recent attention is that meaning can be
grounded in perceptual-motor systems (eg,
Barsalou, 1999). Briefly, this perspective is part of the
embodied cognition approach that posits that the cog-
nitive system of any organism is constrained by the
body in which it is embedded (Wilson, 2002). Thus,
cognition (in this case meaning) is not viewed as being

separable from perceptual, motor, and proprioceptive
systems; rather, it is through the interactions of these
systems with the environment that cognition emerges.
Furthermore, the type of representations that an
organism will develop depends on the structure of
the organism itself and how it exists in the world.
This approach has its roots in Gibson’s (1979) ecolo-
gical psychology, as it is assumed that structures in the
environment afford different interactions to different
organisms. It is through repeated interactions with
the world that concepts and knowledge emerge.
Importantly, the very nature of this knowledge retains
its connections to the manner in which it was acquired:
Rather than assuming that semantic memory consists
of amodal, abstract representations, proponents of
embodied approaches argue that representations are
grounded in the same systems that permitted their
acquisition in the first place (Barsalou et al., 2003).
According to the modality-specific approaches to
knowledge, a given concept is stored in adjacent mem-
ory systems rather than being abstracted. For example,
in Barsolou’s (1999) account, knowledge is stored in
perceptual symbol systems that emerge through
repeated experience interacting with an object or an
event. Briefly, Barsalou assumed that when a percept
is encountered, selective attention focuses on context-
relevant aspects of the percept and allows modal
representations to be stored in memory. Repeated
interactions with similar events or members of the
same category result in the formation of a complex,
multimodal representation, and a simulator emerges
from these common representations. Simulators are
the basic unit of the conceptual system and consist of
a frame (which is somewhat similar to a schema), the
purpose of which is to integrate the perceptual repre-
sentations. Simulators provide continuity in the
system. Importantly, the representations that are
stored include not only modal, perceptual information
(e.g., sounds, images, physical characteristics) but also
emotional responses, introspective states, and proprio-
ceptive information. Retrieving an exemplar or
remembering an event is accomplished by engaging
in top-down processing and activating the targeted
simulator. Importantly, a given simulator can yield
muluple simulations, depending on the organism’s
goal, the context, and the relevant task demands. For
example, different simulations for DOG are possible,
such that a different pattern of activity will occur if the
warm and furry aspect of dog is relevant or whether
the aspect of being a guard or police dog is relevant.
Of course, this nicely captures the context sensitivity
of meaning. Barsalou (1999) argues that perceptual
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symbol systems are as powerful and flexible as amodal
models, as they are able to implement a complete
conceptual system (see also Glenberg and Robertson,
2000).

Evidence in support of modal approaches to
semantics can be found in both behavioral and cog-
nitive neuroscience studies. We briefly review some
of this evidence here, although a full review of the
neuroscience literature is beyond the scope of this
chapter (See Chapter 3.07 for further discussion of
this area). For example, there is evidence from lesion
studies that damage to the pathways supporting a
specific modality results in impaired performance in
categorization and conceptual tasks that rely on that
same modality. Specifically, damage to visual path-
ways generally results in greater impairment in the
domain of living things, which tend to rely heavily on
visual processes for recognition. Conversely, damage
to motor pathways tends to impair knowledge of
artifacts and tools, as the primary mode of interaction
with these items is through manipulation (see Martin,
2005). Consistent with the lesion data, neuroimaging
studies indicate that different regions of the cortex
become active when people process different cate-
gories. Regions adjacent to primary visual areas
become active when categories such as animals are
processed (even if the presentation of the stimulus
itself is not in the visual modality), whereas regions
close to motor areas become active when categories
such as tools are processed. These findings have been
interpreted as consistent with the hypothesis that
people run perceptual-motor simulations when pro-
cessing conceptual information (Barsalou, 2003).

Pecher et al. (2003) reported evidence from a
property verification task indicating that participants
were faster in verifying properties in a given modality
(e.g, BLENDER-loud) after verifying a different
property for a different concept in the same modality
(e.g, LEAVES-rustling) than when a modality switch
was required (eg, CRANBERRIES-tart). Pecher
et al. argued that the switch cost observed was con-
sistent with the hypothesis that participants ran
perceptual simulations to verify the properties (in
this case sounds) rather than accessing an amodal
semantic system. In a subsequent study, Pecher et al.
(2004) observed that when the same concept in a
property verification task was paired with two prop-
erties from different modalities, errors and latencies
increased when verifying the second property. Pecher
et al. interpreted this finding as indicating that recent
experiences with a concept influence the simulation
of the concept. Importantly, researchers have argued

that such results are not simply a result of associative
strength (i.e., priming) nor of participants engaging in
intentional 1magery instructions (Barsalou, 2003;
Solomon and Barsalou, 2004).

Although the results summarized above are com-
pelling and are supportive of the hypothesis that
sensory-motor simulations underlie many semantic
tasks, the majority of these studies have examined
tasks such as property verification and property gen-
eration. The question thus arises of whether the
results are somehow an artifact of the task demands,
and specifically whether these results reflect the
structure of the semantic memory system or whether
subjects are explicitly retrieving information as they
notice the relations embedded within the experimen-
tal context. Glenberg and Kaschak (2002) extended
the evidence for embodiment effects to a novel series
of tasks that do not appear as susceptible to task
demand effects. In these experiments, participants
read a brief sentence and judged whether the sen-
tence made sense or not. The critical sentences
contained statements that implied motion either
toward the participant (e.g, “Nancy gave you the
book”) or away from the participant (e.g, “You gave
the book to Nancy”). Participants responded by mov-
ing their hand toward themselves or away from
themselves. Glenberg and Kaschak found what they
called the action-sentence compatibility effect: When
the required response was consistent with the move-
ment implied in the sentence, participants were faster
than when the implied motion and the actual physi-
cal response were inconsistent. These data appear
most consistent with the view that when processing
language, people relate the meaning of the linguistic
stimulus to action patterns.

2.28.6 Measuring Semantic
Representations and Processes:
Insights from Semantic Priming
Studies

As described above, there have been many empirical
tools that have been used to provide insights into the
nature of semantic memory. For example, as noted
earlier, some of the early work by Osgood et al.
(1957) attempted to provide leverage on fundamental
aspects of meaning via untimed ratings of large sets of
words and multidimensional scaling techniques.
With the advent of interest in response latencies,
researchers turned to sentence verification tasks
that dominated much of the early work in the 1970s
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and 1980s. Although this work has clearly been influ-
ential, the explicit demands of such tasks (e.g,
explicitly asking subjects to verify the meaningful-
ness of subject-predicate relations) led some
researchers in search of alternative ways to measure
both structure and retrieval processes from semantic
memory. There was accumulating interest in auto-
matic processes (LaBerge and Samuels, 1974; Posner
and Snyder, 1975) that presumably captured the
modular architecture of the human processing sys-
tem (Fodor, 1983), and there was an emphasis on
indirect measures of structure and process. Hence,
researchers turned to semantic priming paradigms.

Meyer and Schvaneveldt (1971) are typically
regarded as reporting the first semantic priming
study. In this study, subjects were asked to make lexical
decisions (word-nonword decisions) to pairs of sumuli.
The subjects’ task was to respond yes only if both
strings were words. The interesting finding here was
that subjects were faster to respond yes when the words
were semantically related (DOCTOR NURSE), com-
pared with when they were unrelated (BREAD
NURSE). This pattern was quite intriguing because
subjects did not need to access the semantic relation
between the two words to make the word/nonword
decisions. Hence, this may reflect a relatvely pure
measure of the underlying structure and retrieval
processes, uncontaminated by explicit task demands.
Moreover, the development of this paradigm was quite
important because researchers thought it may tap the
spreading activation processes that was so central to
theoretical developments at the time.

The research on semantic priming took a signifi-
cant leap forward with the dissertation work of Neely
(1977), who used a framework developed by Posner
and Snyder (1975) to decouple the attentional strat-
egic use of the prime-target relations from a more
automatic component. In this study, subjects only
made lexical decisions to the target, and subjects
were given explicit instructions of how to use the
prime information. For example, in one condition,
subjects were told that when they received the
prime BODY, they should think of building parts
(Shift condition), whereas in a different condition,
subjects were told that when they received the cate-
gory prime BIRD, they should think of birds
(Nonshift condition). Neely varied the time available
to process the prime before the target was presented
by using SOAs ranging from 250 to 2000 ms. The
important finding here is that the instructions of
what to expect had no influence on the priming
effects at the short SOA (i.e., priming occurred if the

prime and target had a semantic relationship, inde-
pendent of expectancies), but they did have a large
effect at the long SOA, when subjects had time to
engage an attentional mechanism (i.e, the priming
effects were totally dependent on what subjects were
told to expect, independent of the preexisting rela-
tionship). Hence, Neely argued that the short SOA
data reflected pure automatic measures of the seman-
tic structure and retrieval processes and could be used
as a paradigm to exploit the nature of such semantic
representations.

A full review of the rich semantic priming litera-
ture is clearly beyond the scope of the present
chapter (see Neely, 1991; Lucas, 2000; Hutchison,
2003, for excellent discussions of the methodological
and theoretical frameworks). However, it is useful to
highlight a few issues that have been particularly
relevant to the current discussion. First, there is
some controversy regarding the types of prime-target
relations that produce priming effects. For example,
returning to the initial observation by Meyer and
Schvaneveldt (1971), one might ask if DOCTOR
and NURSE are related because they share some
primitive semantic features or are simply related
because they are likely to co-occur in the same con-
texts in the language. Of course, this distinction
reflects back on core assumptions regarding the na-
ture of semantic information, since models like LSA
might capture priming between DOCTOR and
NURSE, simply because the two words are likely to
cooccur in common contexts. Researchers have
attempted to address this by selecting items that
vary on only one dimension (see, e.g., Fischler,
1977; Lupker, 1984; Thompson-Schill et al., 1998).
Here, semantics is most typically defined by category
membership (e.g., DOG and CAT are both semanti-
cally related and associatively related, whereas
MOUSE and CHEESE are only associatively
related). Hines et al. (1986), De Mornay Davies
(1998), and Thompson-Schill et al. (1998) have all
argued that priming is caused by semantic feature
overlap because of results indicating priming only for
words that shared semantic overlap versus those did
not, when associative strength was controlled.
However, Hutchison (2003) has recently argued
that the studies that have provided evidence for
pure semantic effects (i.e., while equating for associa-
tive strength), actually have not adequately
controlled for associative strength based on the
Nelson et al. (1998) free-association norms. Clearly,
equating items on one dimension (associative
strength or semantic overlap) while manipulating
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the other dimension is more difficult than initially
assumed. In this light, it is interesting to note that
two recent review papers have come to different con-
clusions regarding the role of semantics in semantic
priming based on such item selection studies. Lucas
(2000) argued that there was clear evidence of pure
semantic effects, as opposed to associative effects,
whereas Hutchison (2003) was relatively more skep-
tical about the conclusions from the available
literature.

Balota and Paul (1996) took a different approach to
the meaning versus associative influence in priming
via a study of multple primes, instantiating the con-
ditions displayed in Table 1. As one can see, the
primes were either both related, first related, second
related, or both unrelated to the targets, and the targets
could either be homographic words with distinct
meanings (e.g,, ORGAN) or a nonhomographic words
(e.g, STRIPES). As one can see, the primes were
related to the targets at both the semantic and asso-
ciative level for the nonhomographs (e.g., LION and
STRIPES are both related to TIGER at the associa-
tive and semantic level), but for the homographs the
primes were related to the targets at only the asso-
ciative level (e.g., PIANO and KIDNEY are only
related to ORGAN at the associative level, since
KIDNEY and PIANO are different meanings of
ORGAN). Thus, one could compare priming effects
in conditions in which primes converged on the same
meaning of the target (nonhomographs) and priming
effects where the primes diverged on different

Table 1 Prime-target conditions from the Balota and
Paul (1996) multiprime study

Nonhomographs
Condition Prime 1 Prime 2 Target
Related-related LION TIGER STRIPES
Unrelated-related FUEL TIGER STRIPES
Related-unrelated LION SHUTTER  STRIPES
Unrelated-unrelated  FUEL SHUTTER  STRIPES

Homographs

Condition Prime 1 Prime 2 Target
Related-related KIDNEY  PIANO ORGAN
Unrelated-related WAGON  PIANO ORGAN
Related-unrelated KIDNEY  SODA ORGAN
Unrelated-unrelated ~ WAGON  SODA ORGAN

Balota DA and Paul ST (1996) Summation of activation: Evidence
from multiple primes that converge and diverge within semantic
memory. J. Exp. Psychol. Learn. Mem. Cogn. 22: 827-845.

meanings (homographs). The results from four
experiments indicated that the primes produced clear
additive effects, that is, priming effects from the single
related prime conditions nicely summated to predict
the priming effects from the double related prime
conditions for both homographs and nonhomographs,
suggesting that the effects were most likely a result of
associative level information. Only when subjects
directed attention to the meaning of the word, via
speeded semantic decisions, was there any evidence
of the predicted difference between the two conditions.
Hence, these results seem to be supportive of the
notion that standard semantic priming effects are likely
to be the result of associative-level connections instead
of meaning-based semantic informaton. Of course, the
interesting theoretical question is how much of our
semantic knowledge typically used is caused by over-
lap in the contexts in which items are stored as opposed
to abstracted rich semantic representations.

Hutchison (2003) notes two further findings that
would appear to be supportive of associative influ-
ences underlying semantic priming effects. First, one
can find evidence of episodic priming in lexical deci-
sion and speeded word naming tasks. In these studies,
subjects study unrelated words such as (CITY-
GRASS) and are later presented prime-target pairs
in a standard lexical decision study. The interesting
finding here is that one can obtain priming effects in
such studies, compared to an unrelated /unstudied
pair of words (see McKoon and Ratcliff, 1979).
Thus, the semantic priming effects obtained in
word recognition tasks can also be produced via
purely associative information that develops within
a single study exposure. However, it should be noted
here that there is some question regarding the locus
of such priming effects and that one needs to be
especially cautious in making inferences from the
episodic priming paradigm and the role of task-
specific strategic operations (see, e.g, Neely and
Durgunoglu, 1985; Durgunoglu and Neely, 1987;
Spieler and Balota, 1996; Pecher and Raajmakers,
1999; Faust et al., 2001).

The second pattern of results that Hutchison
(2003) notes as being critical to the associative
account of semantic priming effects is mediated
priming. In these situations, the prime (LION) is
related to the target (STRIPES) only through a non-
presented mediator (TIGER). So, the question is
whether one can obtain priming from LION to
STRIPES, even though these two words appear to
be semantically unrelated. Although de Groot (1983)
failed to obtain mediated priming effects in the
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lexical decision task, Balota and Lorch (1986) argued
that this may have resulted from the task-specific
characteristics of this task. Hence, Balota and Lorch
used a speeded pronunciation task and found
clear evidence of mediated priming. Evidence for
mediated priming has also now been found in versions
of the lexical decision task designed to minimize task-
specific operations (e.g.,, McNamara and Altarriba,
1988; McKoon and Ratcliff, 1992; Sayette et al,
1996; Livesay and Burgess, 1998). Of course, it is
unclear what semantic features overlap between
LION and STRIPES, and so these results would
appear to be more consistent with an associative net-
work model, in which there is a relationship between
LION and TIGER and between TIGER and
STRIPES, along with a spreading activation retrieval
mechanism (see McKoon and Ratcliff, 1992; Chwilla
and Kolk, 2002, for alternative accounts of the retriev-
al mechanism).

In sum, although the semantic priming paradigm
has been critical in measuring retrieval mechanisms
from memory, the argument that these effects reflect
amodal semantic representations that are distinct
from associative information has some difficulty
accommodating the results from multiprime studies,
episodic priming studies, and mediated priming stud-
ies. As noted earlier, there are available models of
semantic memory (e.g., Burgess and Lund, 1997,
HAL; Landauer and Dumais, 1997, LSA) and cate-
gorization (e.g., Hintzman, 1996, MINERVA) that
would strongly support the associative contributions
to performance in such tasks and, indeed, question
the strong distinction between semantic and episodic
memory systems. Hence, this perspective predicts a
strong interplay between the systems. We now turn
to a brief discussion of the evidence that directly
addresses such an interplay.

2.28.7 The Interplay Between
Semantics and Episodic Memory

Memory researchers have long understood the influ-
ence of preexisting meaning on learning and memory
performance (see Crowder, 1976, for a review). Indeed,
in his original memory manifesto, Ebbinghaus (1885)
was quite worried about this influence and so purpose-
fully stripped away meaning from the to-be-learned
materials by presenting meaningless trigrams (KOL)
for acquisition. Of course, semantics has penetrated
episodic memory research in measures of category
clustering (see Bousfield, 1953; Cofer et al, 1966;

Bruce and Fagan, 1970), retrieval-induced inhibition
(see Anderson et al, 1994), and release from proactive
interference (see Wickens, 1973), among many other
paradigms. Indeed, the interplay between preexisting
knowledge and recall performance was the centerpiece
of the classic work by Bartlett (1932). Researchers
realized that even consonant—vowel-consonant tri-
grams were not meaningless (see Hoffman et al,
1987). At this level, one might even question what it
would mean to episodically store in memory totally
meaningless information.

One place where researchers have attempted to
look at the interplay between semantic and episodic
structures 1s within the episodic priming paradigm
described earlier. In these studies, participants
receive pairs of unrelated words for study and then
are later given prime-target pairs that have either
been paired together or not during the earlier acqui-
sition phase. For example, Neely and Durgunoglu
(1985) investigated the influence of studying previous
pairs of words and word—nonword combinations on
both lexical decision performance and episodic recog-
nition performance (also see Durgunoglu and Neely,
1987). Although there were clear differences between
the tasks in the pattern of priming effects (suggesting
dissociable effects across the two systems), there were
also some intriguing similarities. For example, there
was evidence of inhibition at a short prime-target
SOA (150 ms) in both the episodic recognition task
and the lexical decision task from semantically related
primes that were in the initial studied list but were not
paired with the target. It appeared as if this additional
semantic association had to be suppressed in order for
subjects to make both the episodic recognition deci-
sion and the lexical decision. The finding that this
effect occurred at the short SOA also suggests that it
may have been outside the attentional control of the
participant.

The power of preexisting semantic represen-
tations on episodic tasks has recently taken a
substantial leap forward with the publication of an
important paper by Roediger and McDermott (1995),
which revisited an earlier paper published by Deese
(1959). This has now become know as the DRM
(after Deese, Roediger, and McDermott) paradigm.
The procedure typically used in such studies
involves presenting a list of 1015 words for study
(REST, AWAKE, DREAM, PILLOW, BED, etc.)
that are highly related to a critical nonpresented
item (SLEEP). The powerful memory illusion here
is that subjects are just as likely to recall (or recog-
nize) the critical nonpresented item (SLEEP) as
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items that were actually presented. Moreover, when
given remember/know judgments (Tulving, 1985),
participants often give the critical nonpresented
item remember judgments that presumably tapped
detailed episodic recollective experience. It is as if
the strong preexisting semantic memory structure 1is
so powerful that it overwhelms the episodic study
experience.

It should not be surprising that many of the same
issues that have played out in the semantic memory
research have also played out in the false memory
research. Indeed, one model in this area is the activa-
tion monitoring (AM) framework (e.g, Roediger
et al, 2001a), which suggests that subjects sometimes
confuse the activation that is produced by spreading
activation that converges on the critical nonpre-
sented item (much akin to the Collins and Loftus,
1975) with the activation resulting from the study
event. This framework attempts to keep separate
the episodic and semantic systems but also shows
how such systems can interact. In contrast, Arndt
and Hirshman (1998) have used the Hintzman
(1986) MINERVA framework to accommodate the
DRM effect by relying on the similarity of the vec-
tors of the individually stored words and the critical
nonpresented items. As noted above, the MINERVA
framework does not make a strong distinction
between episodic and semantic systems. Moreover,
the MINERVA model is more a feature-based model,
whereas the AM framework & priori would appear
more akin to a prototype model, but no strong claims
have been made along this dimension. A further dis-
tinction between the AM framework and the
MINERVA approach concerns the relative contribu-
tons of backward associative strength (BAS, or the
probability that a list item will elicit the target, or
critical lure, on a free-association task) and forward
associative strength (FAS, or the probability the crit-
ical lure will elicit a list item in such a task).
According to AM accounts, the critical variable is
expected to be BAS, as the activation flows from the
list items to the critical lure. However, according to
MINERVA, FAS should be more important, as the
similarity between the probe (i.e., the critical lure)
and the stored episodes (i.e., the list items) should be
a more powerful determinant of memory perfor-
mance. Results from a multiple regression analysis
reported by Roediger et al. (2001b) indicated that, in
the DRM paradigm, BAS was the better predictor,
thus supporting the AM framework. (We thank
Roddy Roediger for pointing this out.)

The question of the nature of the representation
(le, associative vs semantic) underlying these
powerful memory illusions has also been studied.
For example, Hutchison and Balota (2005) recently
utilized the summation paradigm developed by
Balota and Paul (1996), described earlier, to examine
whether the DRM effect reflects meaning-based
semantic information or could also be accommo-
dated by primarily assuming an associative level
information. Hence, in this study, subjects studied
lists of words that were related to one meaning or
related to two different meanings of a critical non-
presented homograph (e.g, the season meaning of
FALL or the accident meaning of FALL). In addi-
tion, there were standard DRM lists that only
included words that were related to the same mean-
ing of a critical nonpresented word (e.g., such as
SLEEP). Consistent with the Balota and Paul
results, the results from both recall and recognition
tests indicated that there was no difference in the
pattern of false memory for study lists that con-
verged on the same meaning (standard DRM lists)
of the critical nonpresented items and lists that
diverged on different meanings (homograph lists)
of the critical nonpresented items. However, when
subjects were required to explicitly make gist-based
responses and directly access the meaning of the list,
that is, is this word related to the studied list, there
was clear (and expected) difference between homo-
graph and nonhomograph lists. Hutchison and
Balota argued that although rich networks develop
through strategic use of meaning during encoding
and retrieval, the activation processes resulting from
the studied information seem to primarily reflect
implicit associative information and do not demand
rich meaning-based analysis.

There is little doubt that what we store in memory
1s a reflection of the knowledge base that we already
have in memory, which molds the engram. Hence, as
noted earlier, semantic memories may be episodic
memories that have lost the contextual information
across time because of repeated exposures. It is un-
likely that a 50-year-old remembers the details of
hearing the Rolling Stones’ “Satisfaction” for the
first time, but it is likely that, soon after that original
experience, one would indeed have vivid episodic
details, such as where one was, who one was with,
and so on. Although this unitary memory system
approach clearly has some value (e.g, McKoon
et al,, 1986), it is also the case that there is some
powerful evidence from cognitive neuroscience that
supports a stronger distinction.
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2.28.8 Representation and
Distinctions: Evidence from
Neuropsychology

Evidence for the distinction of multiple memory
systems has come from studies of patients with loca-
lized lesions that produce strong dissociations in
behavior. For example, the classic case of HM (see
Scoville and Milner, 1957) indicated that damage to
the hippocampus resulted in impairment of the stor-
age of new episodic memories, whereas semantic
knowledge appeared to be relatively intact (but see
MacKay et al, 1998). Hence, one might be overly
concerned about the controversy from the behavioral
studies regarding the distinct nature of semantic and
episodic memory systems. However, there are addi-
tional neuropsychological cases that are indeed quite
informative about the actual nature of semantic
representations.

2.28.8.1 Category-Specific Deficits

There have now been numerous cases of individuals
who have a specific lesion to the brain and appear to
have localized category-specific deficits. For exam-
ple, there have been individuals who have difficulty
identifying items from natural categories (e.g, ani-
mals, birds, fruits, etc.) but have a relatvely
preserved ability to identify items from artificial
categories (e.g, clothing, tools, furniture). At first
glance, such results would appear to suggest that
certain categories are represented in distinct neural
tssue that have or have not been disrupted by the
lesion. Such a pattern may also be consistent with a
localized representation of meaning instead of a dis-
tributed feature-based representation in which all
concepts share vectors of the same set of primitive
features.

Unfortunately, however, the interpretation of
impaired performance on natural categories and
intact performance on artificial categories has been
controversial. For example, such deficits could occur
at various stages in the information flow from dis-
criminating visually similar items (e.g., Riddoch and
Humphreys, 1987) to problems retrieving the appro-
priate name of an object (e.g,, Hart et al., 1985). Such
accounts do not rely on the meaning of the categories
but suggest that such deficits may reflect correlated
dimensions (e.g., difficulty of the visual discrimina-
ton) that differ between natural and artficial
categories. In this light, it is particularly important

that there have been cases that have shown the oppo-
site pattern. For example, Sacchett and Humphreys
(1992) reported an intriguing case that shows disrup-
tion of the performance on artificial categories and
body parts but relatively preserved performance on
natural categories. They argued that one possible
reason for this pattern is that this individual had a
deficit in representing functional features, which are
more relevant to artifactual representations and body
parts than natural categories such as fruits and vege-
tables. Whatever the ultimate explanation of these
category-specific deficits, this work has been infor-
mative in providing a better understanding of how
members within categories may differ on distinct
dimensions.

In a similar vein, one hypothesis that has
been suggested to explain domain differences in
category-specific deficits is the sensory/functional
hypothesis (Warrington and McCarthy, 1987; Farah
and McClelland, 1991; Caramazza and Shelton,
1998). According to this proposal, natural categories
such as animals depend heavily on perceptual infor-
mation (especially on visual discriminations) for
identification and discrimination. Conversely, func-
tional information is more important for recognition
of artifacts, such as tools. Thus, damage to regions of
sensory cortex is expected to result in selective
impairment of natural kinds, whereas damage to
regions in or adjacent to motor cortex would result
in impairment in artifacts. Although compelling, this
view is not endorsed by all researchers. Caramazza
and colleagues, in particular, have argued that the
sensory/functional hypothesis fails to account for
some of the patterns of deficits observed and some
of the finer-grain distinctions. In particular, it is dif-
ficult for this model to account for the selective
sparing or impairment of fruits and vegetables, body
parts, and musical instruments that have been
reported (see Capitani et al, 2003, for a recent
review). Thus, the question of whether and how the
type of knowledge that is most critical for supporting
the representation of a particular domain is involved
in category-specific deficits remains open.

To address this controversy, Cree and McRae
(2003) extended the sensory/functional hypothesis to
include a broader range of types of knowledge. They
developed a brain region taxonomy that included nine
different forms of knowledge, including sensory/
perceptual in all modalities (vision, taste, audition,
etc.), functional, and encyclopedic. Encyclopedic fea-
tures included information about items such as LIVES
IN AFRICA for ELEPHANT — in other words,
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information that likely was learned and not experi-
enced directly. Cree and McRae then developed a
nine-dimensional representation for the 541 concepts
for which they had norming data and estimated the
salience of each type of knowledge for each object and
each category. In a series of cluster analyses, Cree and
McRae found that the knowledge types nicely pre-
dicted the tripartite distinction between living things,
artifacts, and fruits and vegetables reported in several
neuropsychological case studies. In addition, Cree and
McRae examined several distributional statistics,
including the number of distinguishing and distinctive
features and similarity to obtain a measure of confu-
sability (i.e., the extent to which a given concept might
be confused with another concept from the same cate-
gory). The categories they examined did appear to be
differentially sensitive to these measures, and the
implemented model reflected patterns of impairment
observed in patients. They concluded that knowledge
type does underlie the organization of conceptual
representations and that selective impairment in a
particular brain region involved in maintaining such
knowledge can result in the observed patterns of
impairment in patients with category-specific deficits.
Although many questions remain, it is clear that evi-
dence from individuals with category-specific deficits
has provided considerable insight into both the nature
of category representation and the underlying neural
representations.

2.28.8.2 Semantic Dementia

The most common form of dementing illness is
dementia of the Alzheimer type (DAT). However,
there is also a relatively rare and distinct dementia,
referred to as semantic dementia (SD), which over-
laps with DAT in features such as insidious onset and
gradual deterioration of comprehension and word-
finding ability. SD is a variant of frontal temporal
dementia and typically involves one or both of the
anterior portions of the temporal lobes. The consen-
sus criteria for SD (Hodges et al, 1992) include
impairment in semantic memory causing anomia,
deficits in both spoken and written word comprehen-
sion, a reading pattern consistent with surface
dyslexia (ie, impairment in reading exception
words such as PINT but preserved reading of regular
words and nonwords that follow standard spelling to
sound rules, such as NUST), impoverished knowl-
edge about objects and/or people with relative
sparing of phonological and syntactic components
of speech output, and perceptual and nonverbal

problem solving skills. These individuals are often
quite fluent, but their speech is relatively limited in
conveying meaning. They are particularly poor at
picture naming and understanding the relations
among objects. For example, the Pyramids and
Palm Trees test developed by Howard and
Patterson (1992) involves selecting which of two
items (e.g., a palm tree or a fir tree) is most similar
to a third item (e.g., a pyramid). Individuals with SD
are particularly poor at this task and so would appear
to have a breakdown in the representations of the
knowledge structures.

An interesting dissociation has been made
between SD individuals and DAT individuals. In
particular, Simons et al. (2002) recently found a dou-
ble dissociation, wherein individuals with SD
produced poorer picture naming than individuals
with DAT; however, individuals with SD produced
better performance than individuals with DAT on a
later episodic recognition test of these very same
pictures (also see Gold et al, 2005). Clearly, the
selective impairment across these two groups of
participants is consistent with distinct types of infor-
mation driving these tasks. Of course, one must be
cautious about the implications even from this study,
because it is unlikely that either task is a process-pure
measure of episodic and semantic memory (see
Jacoby, 1991), but clearly these results are very
intriguing.

Recently, Rogers et al. (2004) proposed a model of
semantic memory that maintains strong connections
to modality-specific systems in terms of both inputs
and outputs and has been particularly useful in
accommodating the deficits observed in SD. This
model has some interesting parallels to Barsalou’s
(1999) proposal, in that it assumes that semantic
memory is grounded in perception and action net-
works. In addition, like the model proposed by
McRae et al. (1997), Rogers et al. suggest that the
system 1 sensitive to statistical regularities, and these
regularities are what underlie the development of
semantics. The particular contribution of Rogers
et al’s model, however, is that although semantic
representations are grounded in perception—action
modality-specific systems, the statistical learning
mechanism allows the emergence of abstract seman-
tic representations. Importantly, inputs to semantics
are mediated by perceptual representations that are
modality specific, and as a result, the content of
semantic memory relies on the same neural tissue
that supports encoding. However, different from
Barsalou and colleagues’ account, Rogers et al. do
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suggest that there is a domain-general, abstracted
representation that emerges from cross-modal map-
pings. Thus, although the system relies on perceptual
inputs, the abstract representations can capture cross-
modality similarities and structures to give rise to
semantic memory.

Rogers et al. (2004) implemented a simple version
of their model using a parallel distributed-processing
approach in which visual features provided the percep-
tual input and are allowed to interact in training with
verbal descriptors through a mediating semantic level.
Importantly, the semantic representations emerge
through the course of training as the network learns
the mappings between units at the visual and verbal
levels. The units the model was trained on consisted of
verbal and visual features generated in separate norm-
ing sessions. Once training was complete, several
simulations were reported in which the model was
progressively damaged in a way that was thought to
mimic varying levels of impairment observed in indi-
viduals with SD. Overall, the model nicely captured
the patterns of performance of the patients.
Specifically, one pattern often observed in SD is a
tendency to overregularize conceptual knowledge.
For example, individuals might refer to all exemplars
of a category using the superordinate label or a single
label that is high in frequency (e.g, calling a DOG an
ANIMAL or a ZEBRA a HORSE). This is possibly a
result of the progressive failure in retrieving idiosyn-
cratic information that serves to distinguish exemplars,
such that only the central tendency (e.g, a prototype or
most typical exemplar) remains accessible. Thus, less
common items might take on the attributes of higher-
frequency exemplars. The model displayed similar
patterns of generalization as the SD individuals, a
finding explained in terms of changes in attractor
dynamics that resulted in the relative sparing of fea-
tures and attributes shared by many exemplars but a
loss of more distinctive features. This model provides
an interesting account of semantic memory and the
deficits observed in individuals with SD, one in which
both perceptually based information and abstracted
representations interact to give rise to knowledge of
the world.

2.28.9 Neuroimaging

Investigations into the nature of semantic memory
have benefited from recent advances in technology
that allow investigators to examine online processing
of information in the human brain. For example,

positron emission technology (PET) and functional
magnetic resonance imaging (fMRI) allow one to mea-
sure correlates of neural activity # vive as individuals
are engaged in semantic tasks (see Logothetis and
Wandell, 2004). Although a full review of the substan-
tial contributions of neuroimaging data to the questions
pertaining to semantics 1S beyond the scope of this
chapter (See Chapter 3.07 for a review), we briefly
examine some of the major findings that have helped
constrain recent theorizing about the nature and locus
of semantic representations. T'wo major brain regions
have been identified through neuroimaging studies: left
prefrontal cortex (LPC) and areas within the temporal
lobes, particularly in the left hemisphere.

The first study to report neuroimaging data rele-
vant to semantic memory was conducted by Petersen
et al. (1988), who used PET techniques to localize
activation patterns specific to semantic tasks. Subjects
were asked to generate action verbs upon presenta-
tion of a concrete object noun, and activity during
this task was compared with the activity occurring
during silent reading of the words. Petersen et al.
reported significant patterns of activity in LPC, a
finding that has since been replicated and extended
to other types of attributes. Martin et al. (1995)
extended this work to show that the specific attribute
to be retrieved yielded different patterns of activa-
tion. Specifically, the locus of activation involved in
attribute retrieval tends to be in close proximity to
the neural regions that are involved in perception of
the specific attributes. Thus, retrieval of visual infor-
mation, such as color, tends to activate regions
adjacent to the regions involved in color perception,
whereas retrieval of functional information results in
activation of areas adjacent to motor cortex. These
findings mesh nicely with the perceptual/motor
notions of representation in semantic memory
reviewed above (e.g., Barsalou, 1999; Rogers et al,
2004). In addition, Roskies et al. (2001) reported that
not only were regions in lateral inferior prefrontal
cortex (LIPC) preferentially active during tasks that
required semantic processing, but specific regions
were also sensitive to task difficulty. Thus, it appears
that frontal regions are involved both in the active
retrieval from semantic memory and in processing
specific semantic information.

Many researchers have suggested, however, that
although frontal regions are involved in semantic re-
trieval, the storage of semantic information is primarily
in the temporal regions (see Hodges et al, 1992).
Indeed, another area that has been implicated in
semantic processing is in the ventral region of the
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temporal lobes, centered on the fusiform gyrus, and
especially in the left hemisphere. This area shows
significant activation during word reading and object
naming tasks, indicating it is not sensitive to the stim-
ulus form but to the semantic content therein (see
Martin, 2005, for a review). Furthermore, within this
area, different subregions become more or less act-
vated when subjects view faces, houses, and chairs (e.g,,
Chao et al, 1999), suggesting that different domains
rely on different regions of neural tissue. This, of
course, could be viewed as consistent with the cate-
gory-specific deficits reviewed above. However, as
noted by Martin and Chao (2001), although peak acti-
vation levels in response to objects from different
domains reflect a certain degree of localization, the
predominant finding is a pattern of broadly distributed
activation throughout the ventral temporal and occip-
ital regions, which is consistent with the idea that
representations are distributed over large cortical
regions.

Recently, Wheatley et al. (2005) reported data
from a semantic priming study using fMRI that also
converges on the notion of perceptual motor repre-
sentations of meaning. Subjects silently read related,
unrelated, or identical word pairs at a 250-ms SOA
while being scanned. The related pairs consisted of
category members that were not strongly associa-
uvely related (eg, DOG-GOAT, but see the
discussion above regarding the difficulty of selecting
such items). Given the relatively fast SOA and that no
overt response was required, Wheatley et al. argued
that any evidence for priming should be a reflection of
automatic processes. Consistent with other evidence
that indicates there are reliable neural correlates of
behavioral priming that were evidenced by reduced
hemodynamic activity (Wiggs and Martin, 1998;
Mummery et al, 1999; Rissman et al, 2003;
Maccotta and Buckner, 2004), Wheatley et al. found
decreased activity for identity pairs and a slightdy
smaller, but still significant, decrease for related
pairs relative to the unrelated pairs condition.
Importantly, Wheatley et al. were able to compare
patterns of activation as a function of domain.
Consistent with proposals by Barsalou (1999), they
found that objects from animate objects yielded more
activity in regions adjacent to sensory cortex, whereas
manipulable artifacts resulted in greater activity in
regions adjacent to motor cortex. These findings
were taken as evidence that conceptual information
about objects is stored, at least in part, in neural
regions that are involved in perception and action.

Although the Wheatley et al. (2005) study used a
task that was likely to minimize strategic processing,
one question that remains to be addressed is whether
the automatic and strategic processes involved in
semantic priming tasks (see earlier discussion) can
also be dissociated in neural tissue. In a recent
study, Gold et al. (2006) reported that several of the
brain regions previously implicated in processing
during semantic tasks are differentally sensitive to
the automatic and strategic processes involved in
lexical decision tasks. In three experiments, Gold
et al. manipulated prime target relatedness, SOA,
and whether primes and targets were orthographi-
cally or semantically related. Long and short SOAs
were intermixed in scanning runs to assess the rela-
tive contributions of strategic and
processes (see Neely, 1991). A comparison of ortho-
graphic and semantic priming conditions was
included to determine whether any areas were par-
ticularly sensitive to the two sources of priming or
whether priming effects are more general mecha-
nisms. The results clearly indicated that different
regions responded selectively to different conditions.
Specifically, midfusiform gyrus was more sensitive to
automatic than strategic priming, but only for seman-
tically related primes, as this region did not show
reduced acuvity for orthographic primes. Four
regions were more sensitive to strategic than auto-
matic priming, two in left anterior prefrontal cortex
and bilateral anterior cingulate. Even more intrigu-
ing, the two regions in LIPC were further dissociated:
The anterior region showed strategic semantic facil-
itation, as evidenced by decreased activity, relative to
a neutral baseline, whereas the posterior region
showed strategic semantic inhibition, or increased
activity, relative to the neutral baseline. In addition,
the medial temporal gyrus showed decreased activa-
tion concurrently with the anterior LIPC, supporting
previous claims that these regions show greater acti-
vation in tasks that are more demanding of strategic
processes but reduced activation when the strategic
processes are less demanding (Wagner et al., 2000;
Gold et al,, 2005). In sum, it appears that the behav-
ioral dissociations between automatic and strategic
processes in priming tasks are also found in the neu-
roimaging data. The complexity of the patterns of
activation involved in semantic tasks appears to indi-
cate that the retrieval and storage of semantic

automatic

information is indeed a distributed phenomenon
that requires the coordination of a wide array of
neural tissue.
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2.28.10 Development and
Bilingualism

Although we have attempted to provide a review of
the major issues addressed in semantic memory
research, there are clearly other important areas that
we have not considered in detail because of length
limitations. For example, there is a very rich area of
developmental research addressing the acquisition of
meaning in children (see Bloom, 2000, for a compre-
hensive review), along with work that attempts to
capture the nature of semantic memory in older
adulthood (see, e.g., Balota and Duchek, 1989). Of
course, we touched upon these issues earlier when
discussing how the small world networks of Steyvers
and Tenenbaum (2005) develop over time, along with
the work by Rosch (1975) on the development of
categorization. Given that meaning is extracted from
interactions with the environment, the developmental
literature is particularly important to understand how
additional years of experience mold the semantic
system, especially in very early life. There are many
interesting connections of this work to topics covered
earlier in this chapter. For example, regarding the
influence of preexisting structures on false memory,
it is noteworthy that young children (5-year-olds) are
more likely to produce phonological than semantic
false memories, whereas older children (around 11
years and older) are more likely to produce the oppo-
site pattern (see Dewhurst and Robinson, 2004).
Possibly, this is a natural consequence of the devel-
opment of a rich semantic network in early childhood
that lags behind a more restricted phonological
system.

Another very active area of research involves the
nature of semantic representations in bilinguals (see
Francis, 1999, 2005, for excellent reviews). For exam-
ple, researchers have attempted to determine whether
there is a common semantic substrate that is amodal,
with each language having specific lexical level repre-
sentations (e.g., phonology, orthography, syntax, etc.)
that map onto this system. This contrasts with the
view that each language engages distinct semantic
level representations. Although there is stll some
controversy, the experimental results seem more con-
sistent with the assumption that the semantic level is
shared across languages, at least for skilled bilinguals.
Evidence in support of this claim comes from a
diverse range of tasks. For example, in a mixed lan-
guage list, memory for the language of input is
generally worse than memory for the concepts

(e.g., Dalrymple-Alford and Aamiry, 1969). In addi-
tion, one finds robust semantic priming effects by
translation equivalents (words in different languages
with the same meaning, e.g.,, DOG in English and
HUND in German), which is consistent with at least
a partially shared semantic representation (e.g., de
Groot and Nas, 1991; Gollan et al., 1997).

2.28.11 Closing Comments

The nature of how humans develop, represent, and
efficiently retrieve information from their vast repo-
sitory of knowledge has for centuries perplexed
investigators of the mind. Although there is clearly
considerable work to be done, recent advances in
analyses of large-scale databases, new theoretical
perspectives from embodied cognition and small
world networks, and new technological develop-
ments allowing researchers to measure, iz vivo,
brain activity, are making considerable progress
toward understanding this fundamental aspect of
cognition.
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