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The joint effects of stimulus quality and word frequency in lexical decision were examined in 4
experiments as a function of nonword type (legal nonwords, e.g., BRONE, vs. pseudohomophones, e.g.,
BRANE). When familiarity was a viable dimension for word–nonword discrimination, as when legal
nonwords were used, additive effects of stimulus quality and word frequency were observed in both
means and distributional characteristics of the response-time distributions. In contrast, when the utility of
familiarity was undermined by using pseudohomophones, additivity was observed in the means but not
in distributional characteristics. Specifically, opposing interactive effects in the underlying distribution
were observed, producing apparent additivity in means. These findings are consistent with the suggestion
that, when familiarity is deemphasized in lexical decision, cascaded processing between letter and word
levels is in play, whereas, when familiarity is a viable dimension for word–nonword discrimination,
processing is discrete.
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One of the most robust and intriguing findings in the visual
word recognition literature is the observation that stimulus quality
and word frequency produce additive effects in lexical decision
performance (Balota & Abrams, 1995; Becker & Killion, 1977;
Plourde & Besner, 1997; Stanners, Jastrzembski, & Westbrook,
1975; Yap & Balota, 2007). When discriminating between words
and nonwords, participants respond faster to frequently encoun-
tered, compared to rarely encountered, words; they also respond
faster to visually clear, compared to visually degraded, words.

However, these two factors are strongly additive, that is, two main
effects with no interaction. Using Sternberg’s (1969a) additive-
factors logic, Yap and Balota (2007) argued that the additive
effects of stimulus quality and word frequency can be interpreted
as being consistent with an early encoding stage where stimuli are
perceptually normalized and a later stage where lexical retrieval
takes place. Perceptual normalization here is defined as a process
that refines a degraded representation sufficiently to allow subse-
quent lexical retrieval processes to work equally efficiently for
clear and degraded stimuli (Sternberg, 1969b). In the context of
lexical decision, this allows degraded words that have been nor-
malized to be matched to representations stored in memory.

Although separate stages imply additive effects, additive
effects do not necessarily imply separate stages. For example,
in a cascade model (McClelland, 1979), all processes are op-
erating continuously, with the partial output of one process
immediately available as an input for the next process. Impor-
tantly, the cascade model does not assume separate stages, and
yet is able to produce approximately additive effects. However,
we suggest that the additive effects of stimulus quality and
word frequency are easier to reconcile with a stage than a
cascade architecture. Specifically, Roberts and Sternberg
(1993) evaluated the predictions of these two classes of models
across a variety of experimental domains (e.g., detection, iden-
tification, and classification), and concluded that the stage
model provided a better account of empirical additive effects
and that the cascade model incorrectly predicted the relations
between means and variances (see Roberts & Sternberg, 1993,
and Yap & Balota, 2007, for more in-depth discussion).
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Additive Effects and Models of Word Recognition

Importantly, the additive pattern between word frequency and
stimulus quality has been invoked as support for multistage models of
word recognition (e.g., Borowsky & Besner, 1993; Forster, 1976;
Paap, Newsome, McDonald, & Schvaneveldt, 1982), and is trouble-
some for models where stimulus quality and frequency exert effects at
a common locus. For example, the classic logogen model (Morton,
1969) predicts an interaction between the two variables, with larger
stimulus quality effects for low-frequency words. In order to illustrate
this prediction, consider a high-frequency word that is 10 cycles away
from recognition threshold and a low-frequency word that is 20 cycles
away from threshold, that is, a word frequency effect of 10 cycles. If
one degrades the input such that the input on each cycle decreases by
half in the degraded condition (compared to the clear condition), then
it should take twice as many cycles for the low-frequency word to
reach threshold. Specifically, the high-frequency word will be recog-
nized in 20 (2 � 10) cycles, whereas its low frequency counterpart
will only be recognized in 40 (2 � 20) cycles. Hence, the original
word frequency effect of 10 cycles now yields a word frequency
effect of 20 cycles in the degraded condition, producing a stimulus
quality �word frequency interaction.

Therefore, additivity seems incompatible with influential com-
putational models that are built on the logogen framework, such as
the interactive activation model (McClelland & Rumelhart, 1981),
the computational dual route cascaded model of word recognition
(Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001), the multiple
read-out model (Grainger & Jacobs, 1996), and the CDP � model
(Perry, Ziegler, & Zorzi, 2007). Indeed, simulations of the dual
route cascaded model confirm our intuitions; stimulus quality and
word frequency interacted in pronunciation performance, with
larger stimulus quality effects for low-frequency words (Reynolds
& Besner, 2004). The connectionist framework of lexical process-
ing (Plaut, McClelland, Seidenberg, & Patterson, 1996), the major
alternative to the dual route approach, also appears to yield the
same interaction. Specifically, Plaut (personal communication,
January 18, 2005), using the attractor network model described in
Simulation 3 of Plaut et al., demonstrated that word frequency
effects in pronunciation were larger for degraded items than for
clear items. In summary, it appears that well-studied computa-
tional models of word recognition produce evidence for interactive
effects of stimulus quality and word frequency, a finding that is
difficult to reconcile with the empirical observation of additivity.

It is also unclear if additive effects of stimulus quality and word
frequency can be accommodated by models that specifically target
lexical decision performance. For example, the diffusion model (Rat-
cliff, Gomez, & McKoon, 2004) proposes that lexical decisions are
driven by the accumulation of noisy information from a stimulus over
time and that variations in performance can be modeled by a small
number of parameters, such as drift rate (rate at which information
accumulates) and boundary separation (the criterion that must be
reached before a decision is made). It is not easy to envision how the
diffusion model would handle strongly additive effects. For example,
if we assume that stimulus degradation decreases drift rates for both
high- and low-frequency words, this would predict larger stimulus
quality effects for low-frequency words, given that they take longer to
reach the word boundary. In fact, the geometry of the diffusion
process ensures that the same change in drift rate for slow and fast
response times (RTs) will lead to larger effects for the slow RTs

compared to the fast RTs (Ratcliff & Rouder, 1998). Of course, the
diffusion model fits a large number of parameters from data sets,
including mean RTs for correct and error responses, the relative
speeds of correct and error responses, the distribution of RTs, and
error rates. Ultimately, whether the diffusion model can handle these
effects is an empirical question that can only be answered by running
the appropriate simulations on the actual model. Interestingly, when
lexical decision data from a study investigating stimulus quality and
frequency effects (Yap & Balota, 2007) were fitted to the diffusion
model, the model parameters indicated that degradation had multiple
effects. Specifically, drift rates went down, stimulus encoding took
longer, and participants set more conservative response criteria (R.
Ratcliff, personal communication, December 30, 2005). However, the
model’s fit for degraded words compared to clear words was associ-
ated with a much larger chi-square statistic, suggesting that it had
difficulty capturing the empirical pattern.

Are Additive Effects Task-Specific?

The work examining the combined effects of stimulus quality and
word frequency have almost always been based on the lexical deci-
sion task (LDT). Balota and Chumbley (1984) have argued that the
LDT reflects both word identification processes and the word–
nonword discrimination processes specific to that task. Specifically, to
carry out a lexical decision, participants can use familiarity-based
information to discriminate between words, which are familiar, and
nonwords, which are unfamiliar. Familiarity-based information, in
this context, refers to a global multidimensional quantity that reflects
the orthographic and phonological similarity of a letter string to real
words and is associated with labels such as familiarity/meaningfulness
(Balota & Chumbley) and wordness (Ratcliff et al., 2004). With
respect to extant models of visual word recognition, familiarity maps
most obviously onto global lexical activity. Specifically, in both the
dual route cascaded model (Coltheart et al., 2001) and the multiple
read-out model (Grainger & Jacobs, 1996), word lexical decisions are
produced when either local lexical activity (activation level of a single
lexical representation) or global lexical activity (summed activation
levels of all lexical representations) exceeds their respective thresh-
olds. Because words will typically produce more global lexical activ-
ity than nonwords, global activity/familiarity is clearly a useful di-
mension for the word–nonword discrimination.

It is possible that the additive effects of stimulus quality and word
frequency observed in the LDT are a by-product of lexical decision’s
emphasis on familiarity-based information (Balota & Chumbley,
1984; Besner, 1983). That is, because visual degradation undermines
the familiarity-based information of a stimulus, participants may be
compelled to perceptually normalize degraded stimuli in an additional
early encoding stage, allowing familiarity-based information to be
recovered and then used to discriminate familiar words from unfa-
miliar nonwords. If this hypothesis is correct, then additive effects
should not be observed in lexical processing tasks that do not place
such a high degree of emphasis on familiarity-based information.
These tasks include speeded pronunciation, where participants read
aloud visually presented words, and semantic classification, where
participants decide whether items are exemplars of some category
(e.g., Is BIRD animate?). Indeed, Yap and Balota (2007) have re-
cently reported that for the same set of words that produces clear
additive effects in lexical decision performance, speeded pronuncia-
tion and semantic classification yielded interactive effects of these two
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factors, with larger stimulus quality effects for low-frequency words.
Interestingly, using the same stimuli but a different degradation manipu-
lation, O’Malley, Reynolds, and Besner (2007) obtained precisely the
same pattern in speeded pronunciation. This is noteworthy because it
confirms that the interaction is not an artifact of the degradation manip-
ulation, which was contrast reduction in O’Malley et al. and rapid alter-
nation of a letter string and a mask in Yap and Balota.

These findings suggest that the additive effects of stimulus quality
and word frequency and the attendant implication of an early normal-
ization stage are specific to lexical decision. Interestingly, in Stern-
berg’s (1967) short-term memory scanning task, where participants
decide whether a probe digit appeared in a previously presented set,
additive effects of stimulus quality and set size are also realized. In
this classic work, Sternberg interpreted these additive effects as being
consistent with a stage model of memory search, where stimulus
quality influences an early encoding stage and set size influences a
subsequent serial comparison stage. This comparison is particularly
germane because memory scanning can be viewed as conceptually
very similar to lexical decision in that it also involves a binary
decision that can be driven by familiarity-based information (Atkin-
son & Juola, 1974). In fact, Yap and Balota (2007) speculated that, in
experimental contexts where familiarity is useful for driving binary
decisions, normalization is necessary for recovering the familiarity-
based information.

It is important to recognize, however, that the LDT is not a unitary
task, but may recruit different types of information for performing the
word–nonword discrimination, depending on the nature of the non-
word foils used (e.g., Shulman, Hornak, & Sanders, 1978). Interest-
ingly, all studies that have examined the joint effects of stimulus
quality and word frequency in lexical decision (Balota & Abrams,
1995; Becker & Killion, 1977; Borowsky & Besner, 1993; O’Malley
et al., 2007; Plourde & Besner, 1997; Stanners et al., 1975; Yap &
Balota, 2007) have used orthographically legal nonwords, like FLIRP.
Such nonwords are orthographically similar to but phonologically
distinct from real words, making familiarity a viable dimension for
word–nonword discrimination. The question addressed in the present
study is what happens when the discrimination is made more difficult,
via the inclusion of pseudohomophones (i.e., nonwords that sound
like real words, e.g., BRANE) as the nonword foil items. In this
situation, because of the increased word–nonword overlap, familiarity
or global lexical activity becomes a less reliable metric for lexical
decisions, and participants may be compelled to individuate the letter
strings in a more fine-grained manner, as they appear to do in speeded
pronunciation and semantic classification. For example, within the
dual route model, the decision making mechanism may now weight
local lexical activity more heavily than global lexical activity during
lexical decision. More importantly, because the utility of familiarity is
undermined, the perceptual normalization stage, which is used to
recover familiarity-based information, may now be diminished in
lexical decision. This implies that when pseudohomophones are used,
one may no longer observe the signature additive effects of stimulus
quality and word frequency.

In addition to examining the influence of stimulus quality and word
frequency in the context of pseudohomophones (nonwords that sound
like real words, e.g., BRANE), we also analyzed RT performance at
the level of distributional characteristics. It is becoming increasingly
clear that the analysis of mean RTs alone is not only inadequate but
can sometimes be misleading (Andrews & Heathcote, 2001; Balota &
Spieler, 1999; Heathcote, Popiel, & Mewhort, 1991; Plourde &

Besner, 1997; Spieler, Balota & Faust, 1996; Yap, Balota, Cortese, &
Watson, 2006). In particular, failing to take the shape of the distribu-
tion into account may obscure more subtle aspects of performance. In
their seminal article, Heathcote and colleagues (1991) investigated
Stroop color-naming performance. Examining mean RTs, they ob-
served no difference between the congruent (RED displayed in red)
and baseline (XXX displayed in red) conditions. However, distribu-
tional analyses revealed that congruency shifted the leading edge of
the RT distribution leftwards while simultaneously increasing its
skew and that these opposing effects cancelled each other out, spuri-
ously producing a null effect (see Spieler et al., 1996, for a replication
of this pattern).

Distributional shifting and skewing were quantified using ex-
Gaussian analyses, which characterize RT distributions by fitting RT
data to an explicit model, the ex-Gaussian distribution. The ex-
Gaussian distribution is a convolution of the normal (Gaussian) and
exponential distributions, and contains three parameters: �, the mean
of the normal distribution; �2, the variance of the normal distribution;
and �, the mean and standard deviation of the exponential distribution
(mathematically, the mean and standard deviation of the exponential
distribution are identical). Fitting data to the ex-Gaussian yields pa-
rameter estimates (�, �, �) for the data of interest and involves
iteratively searching for a set of parameters that maximizes the good-
ness of fit between the empirical data and the theoretical ex-Gaussian
distribution (see Press, Flannery, Teukolsky, & Vetterling, 1988, pp.
274–334, for more information). One interesting property of ex-
Gaussian analyses is that the mean is the algebraic sum of � and �,
allowing differences in means to be partitioned into � (distributional
shifting) and � (distributional skewing).

In this article, we explore RT distributional characteristics using
ex-Gaussian analyses and a nonparametric technique called vincen-
tizing. Vincentizing creates composite RT distributions by averaging
RT distributions across participants and involves computing a pre-
defined number of vincentiles as a function of participant and exper-
imental condition, where a vincentile is defined as the mean of
observations between neighboring percentiles. For example, to obtain
10 vincentiles, the RT data within each condition for a participant is
first sorted (from fastest to slowest responses), and the first 10% of the
data are then averaged, followed by the second 10%, and so on.
Individual vincentiles are then averaged across participants. Impor-
tantly, unlike ex-Gaussian fitting, vincentizing represents raw data
directly and makes no assumptions about the shape of the underlying
RT distribution. Plots of mean vincentiles are useful for investigating
how different variables influence different regions of the RT distri-
bution and provide an important graphical complement to ex-
Gaussian analyses (see Balota, Yap, Cortese, & Watson, in press, for
further discussion of the relation between vincentile plots and ex-
Gaussian parameters).

Most relevant for the purposes of this study, Plourde and Besner
(1997) and Yap and Balota (2007) observed additivity in the means,
higher order cumulants1 (i.e., variance and the third cumulant), and
the ex-Gaussian parameters in their distributional analyses of lexical

1 Cumulants are statistics that describe the characteristics of a distribution
and are closely related to its moments. The first cumulant is the mean, the
second the variance, and the third estimates the skew of a distribution. The
third cumulant is zero for symmetric distributions, is negative for negatively
skewed distributions, and is positive for positively skewed distributions.
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decision performance. In the present study, we evaluate whether the
predicted additivity persists when the utility of familiarity is under-
mined via a pseudohomophone nonword context. Indeed, it is even
possible that one may observe trade-off effects in the underlying
distributional characteristics that are not apparent at the level of the
mean, like those reported by Heathcote et al. (1991) in Stroop per-
formance. It is also useful to examine higher order cumulants because
additivity in these estimates provides additional support for separate
and independent processes (Roberts & Sternberg, 1993). It is impor-
tant to point out, however, that estimates for higher order cumulants
are associated with extremely large variances and are also very
sensitive to outliers (Ratcliff, 1979). For example, Ratcliff estimated
that 10,000 observations were necessary before the standard deviation
of the fourth cumulant could be brought down to 10% of the size of
the fourth cumulant. Given the relatively modest cell sizes used in this
study (n � 50), it is likely that estimates of the variance and the third
cumulant will be highly variable and unstable. However, if interac-
tivity is still observed in these very noisy estimates, this provides
compelling evidence against independent stages.

Overview of Experiments

The joint effects of stimulus quality and word frequency were
assessed in four lexical decision experiments. Legal pronounceable
nonwords (e.g., FLIRP) were used in Experiment 1 whereas all the
nonwords in Experiments 2, 3, and 4 consisted of pseudohomophones
(e.g., BRANE). We expected to see additive effects of stimulus
quality and word frequency in Experiment 1 in both means and
distributional characteristics, given the prior work by Yap and Balota
(2007) and Plourde and Besner (1997).2

In Experiment 2, the presence of pseudohomophones should in-
crease the size of the word frequency effect, because it has been
demonstrated that as word–nonword discrimination difficulty in-
creases, word frequency effects increase in magnitude. The interaction
between nonword type and word frequency can be accommodated
within the random-walk framework, which, like the diffusion model
described earlier, assumes that lexical decision involves the accumu-
lation of noisy information over time (Stone & Van Orden, 1993; Yap
et al., 2006). Like the diffusion model, the random-walk model
produces larger effects in RT latencies when signal strength (the
analogue of drift rate) is low. Broadly speaking, when pseudohomo-
phones are used, discrimination difficulty is high and evidence accu-
mulates less rapidly. This translates to a lower signal strength and
larger effects. The critical question is whether we now obtain evi-
dence for additivity in means and RT distributional characteristics
when word–nonword discrimination is more difficult. Because of the
intriguing distributional results obtained in Experiment 2, we at-
tempted to replicate this pattern in two additional pools of participants
from two different universities, who have different profiles of perfor-
mance in the LDT. Because the experiments are very similar, we
provide a single overall General Method section, and report the results
separately for each experiment.

General Method

Sample and Procedures

Participants. A total of 144 participants participated in the four
experiments for course credit or $10 (see Table 1 for a summary of
participant characteristics). All participants had normal or corrected-

to-normal vision and were recruited from the Washington University
(Experiments 1 and 2); the University at Albany, State University of
New York (Experiment 3); and the University of Waterloo (Experi-
ment 4) participant pools.

Apparatus. An IBM-compatible computer running E-prime
software (Schneider, Eschman, & Zuccolotto, 2001) was used to
control stimulus presentation and to collect data. The stimuli were
displayed on a 17-in. Super VGA monitor, and participants’ re-
sponses were made on a computer keyboard.3

Stimuli. The stimuli for the LDT consisted of 200 words, 200
length-matched pronounceable nonwords (Experiment 1), and 200
length-matched pseudohomophones (Experiments 2, 3, and 4; see
Appendix for a full list of stimuli). One hundred words were desig-
nated high frequency (mean counts per million � 1,227) and 100
words low frequency (mean counts per million � 44; Lund & Bur-
gess, 1996). For high-frequency words, the mean length was 4.73
letters (SD � .96), and the mean orthographic neighborhood size (N)
(Coltheart, Davelaar, Jonasson, & Besner, 1977) was 4.77. For low-
frequency words, the mean length was 4.78 letters (SD � .85), and the
mean N was 4.82. There was no significant difference between high-
and low-frequency words with respect to length (t � 1) and ortho-
graphic neighborhood size (t � 1). For the legal nonwords and
pseudohomophones, the mean Ns were 3.38 and 4.66, respectively,
p � .002.4 For the pseudohomophones, the mean baseword fre-

2 The purpose of Experiment 1 was to provide a necessary baseline,
specifically a within-subjects experiment utilizing the degradation manip-
ulation (rapid interleaving of mask and target) described in Yap and Balota
(2007). Yap and Balota used a between-participants manipulation; and,
although Plourde and Besner (1997) had a within-subjects design, their
degradation manipulation was based on contrast reduction.

3 One reviewer was concerned that collecting response latencies from
the keyboard may not be as accurate as using the PST serial response box.
According to the timing simulations described in Schneider et al. (2001),
E-prime programs running on appropriately tuned desktop Pentium class
machines running at 120MHz or faster can collect millisecond precise
real-time input from either a keyboard or the PST response box.

4 The fact that the pseudohomophones and legal nonwords were not
matched on orthographic N suggests that any observed nonword type effects
cannot be unambiguously attributed to pseudohomophony; it is quite possible
that orthographic N is also making a contribution. However, in Experiments
2–4, we are not claiming that pseudohomophony per se is responsible for the
observed effects. Rather, we are primarily interested in manipulating the
familiarity of the nonword context and examining how foils that are more
similar to targets (i.e., pseudohomophones) influence the response to words.
Clearly, familiarity in this instance is a multidimensional quantity that could
encompass pseudohomophony and/or orthographic neighborhood size.

Table 1
Mean Age, Years of Education, and Vocabulary Age (in Years)
of Participants (Standard Deviations in Parentheses)

Experiment N Age
Years of

Education Vocabulary Agea

1 28 20.54 (5.73) 13.50 (1.43) 18.70 (0.86)
2 56 20.87 (5.44) 13.78 (1.37) 18.72 (0.97)
3 28 19.37 (2.73) 12.22 (1.22) 16.86 (1.81)
4 32 20.94 (1.90) Not available 17.72 (1.18)

Note. aShipley (1940) vocabulary scores.
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quency (i.e., the frequency of the word BRAIN for the nonword
BRANE) was 647 counts per million.

Procedure. Participants were tested individually in sound-
attenuated cubicles under standard lighting conditions, sitting about
60 cm from the computer screen. After completing a computer-
administered 40-item Shipley (1940) vocabulary task, participants
were told that letter strings would be presented at the center of the
screen and that they were to indicate as quickly and accurately as
possible via a button press on the keyboard whether the letter string
spelled a word they knew or not. Twenty practice trials were then
presented, followed by five experimental blocks of 80 trials, with
mandatory breaks between blocks. The order in which stimuli were
presented was randomized anew for each participant, with clear and
degraded trials randomly intermixed within each block. All stimuli
were uppercase and were presented in the 14-point Courier font. For
the degradation condition, letter strings were rapidly alternated with a
randomly generated mask of the same length. For example, the mask
&?# was presented for 14 ms, followed by DOG for 28 ms; and the
two were repeatedly alternated until the participant responded. The
mask was generated from random permutations of the symbols @, #,
$, %, &, ?, and *, with the proviso that the mask be the same length
as the string and that symbols not be repeated within a mask. Each
trial consisted of the following order of events: (a) a fixation point (�)
at the center of the monitor for 400 ms, (b) a blank screen for 200 ms,
and (c) a stimulus centered at the fixation point’s location. The
stimulus remained on the screen until a keyboard response was made.
Participants pressed the apostrophe key for words and the A key for
nonwords. Each correct response was followed by a 1,600 ms delay.
If a response was incorrect, a 170 ms tone was presented simulta-
neously with the onset of a 450 ms presentation of the word “Incor-
rect” (displayed slightly below the fixation point). In order to keep the
delay between the response to a stimulus and the presentation of the
next stimulus constant across correct and incorrect trials, each incor-
rect response was followed by a 1,150-ms delay.

Design. A 2 � 2 factorial design was used: both stimulus
quality and word frequency were manipulated within participants.
The stimulus quality of each item was also counterbalanced across
participants, so that there were 50 observations for each of the four
experimental conditions.

Results

For all experiments, errors and response latencies faster than
200 ms or slower than 3,000 ms were first excluded, and the
overall mean and standard deviation of each participant’s word and
nonword latencies were then computed. Of the remaining laten-
cies, any latencies 2.5 standard deviations above or below each
participant’s respective mean (across all conditions) were re-
moved. Analyses of variance (ANOVAs) were then carried out on
the mean response latencies, accuracy, cumulants, and ex-
Gaussian parameters of the RT data. For RT means and accuracy,
ANOVAs by participants and items were conducted. For the
cumulants and ex-Gaussian parameters, only ANOVAs by partic-
ipants were conducted.

Experiment 1

Results

In Experiment 1, the overall error rate was 6.6%, and data
trimming eliminated an additional 2.4% of the trials. The mean
response latencies, accuracy, variance, third cumulant, and ex-
Gaussian parameters for Experiment 1 are presented in Table 2.

Mean response latencies and accuracy. The ANOVA on mean
response latencies yielded significant main effects of stimulus
quality, Fp(1, 27) � 81.30, p � .001, MSE � 2,795.42, �2 � .75;
Fi(1, 198) � 285.10, p � .001, MSE � 3,167.84, �2 � .59, and
word frequency, Fp(1, 27) � 118.61, p � .001, MSE � 627.34,
�2 � .82; Fi(1, 198) � 52.36, p � .001, MSE � 6,545.71, �2

�.21. The stimulus quality � word frequency interaction was not
significant, either by participants (F � 1) or by items ( p � .24).
Turning to accuracy, the main effects of stimulus quality, Fp(1,
27) � 21.67, p � .001, MSE � .0012, �2 � .45; Fi(1, 198) �
22.13, p � .001, MSE � .0040, �2 � .10, and word frequency,
Fp(1, 27) � 45.48, p � .001, MSE � .0014, �2 � .63; Fi(1, 198) �
22.31, p � .001, MSE � .010, �2 � .10, were again significant.
The interaction between stimulus quality and word frequency was
not significant (Fp and Fi � 1).

Variance and third cumulant. For variance, only the main effect
of stimulus quality was significant, F(1, 27) � 11.02, p � .003,

Table 2
Means of Participants’ Lexical Decision Response Time Means, Accuracy, Variance, Third Cumulant, and Ex-Gaussian Parameter
Estimates as a Function of Stimulus Quality and Word Frequency in Experiment 1, Legal Nonword Background

Stimulus quality/word
frequency M % Errors Mu Sigma Tau Var 3rd cum

Clear
High-frequency words 557 2 455 43 102 1.67E � 04 5.77E � 06
Low-frequency Words 605 6.8 486 53 121 1.93E � 04 4.68E � 06
Frequency effect 48 4.8 31 10 19 2.61E � 03 	1.09E � 06

Degraded
High-frequency words 644 5 490 41 156 4.07E � 04 2.95E � 07
Low-frequency Words 699 9.8 522 47 180 4.37E � 04 1.97E � 07
Frequency effect 55 4.8 32 6 24 2.96E � 03 	9.78E � 06

Interaction 7 0 1 	4 5 3.43E � 02 	8.69E � 06
Nonwords

Clear legal nonwords 683 7 567 64 117
Degraded legal nonwords 797 7.6 583 68 216
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MSE � 1.50E � 09, �2 � .29; the variance was larger for degraded
words. The main effect of frequency and the interaction were not
significant, Fs � 1. For the third cumulant, only the main effect of
stimulus quality was significant, F(1, 27) � 5.20, p � .031, MSE �
2.03E � 15, �2 � .16; the third cumulant was larger for degraded
words. The main effect of frequency and the interaction did not
approach significance, Fs � 1. As noted earlier, because of the high
degree of variability in higher order cumulants, the lack of a reliable
interaction cannot be taken as definitive support for additive stages,
but it is consistent with this perspective.

Ex-Gaussian analyses. Using the quantile maximum likeli-
hood estimation (QMLE) procedure in the QMPE v2.18 program
(Cousineau, Brown, & Heathcote, 2004; Heathcote, Brown, &
Mewhort, 2002), ex-Gaussian parameters (�, �, �) were obtained
for each participant across the different experimental conditions.
QMLE provides unbiased parameter estimates and has been dem-
onstrated to be more effective than continuous maximum likeli-
hood estimation for small samples (Heathcote & Brown, 2004;
Speckman & Rouder, 2004). All fits successfully converged within
250 iterations.

For �, the main effects of stimulus quality, F(1, 27) � 45.61,
p � .001, MSE � 753.38, �2 � .63, and word frequency, F(1,
27) � 80.83, p � .001, MSE � 336.74, �2 � .75, were significant.
The stimulus quality � word frequency interaction was not sig-
nificant (F � 1). Turning to �, only the main effect of word
frequency approached significance, F(1, 27) � 3.49, p � .073,
MSE � 480.11, �2 � .11. Turning to �, the main effects of
stimulus quality, F(1, 27) � 23.37, p � .001, MSE � 3,808.02,
�2 � .46, and word frequency, F(1, 27) � 12.08, p � .002, MSE �
1,030.34, �2 � .31, were significant. The stimulus quality � word
frequency interaction was not significant (F � 1). The ex-Gaussian
analysis is very clear; all parameters (except �) produced main
effects, but none of the parameters produced interactions.

Vincentile analyses. The mean vincentiles5 for the different
experimental conditions are plotted in the top two panels of Figure
1, whereas the bottom panel of Figure 1 presents the mean fre-
quency effect as a function of stimulus quality and vincentiles. For
the top two panels, the empirical mean vincentiles are represented
by data points and standard error bars, and the estimated vincen-
tiles for the respective best-fitting ex-Gaussian distribution are
represented by lines. As the error bars indicate, each vincentile
represents a different range of RTs for each participant. Presenting
the data in this manner allows one to visually assess the goodness
of fit between empirical and estimated vincentiles. Clearly, the
data are fitted well by the ex-Gaussian distribution, and the diver-
gence between mean vincentiles and theoretical ex-Gaussian vin-
centiles is typically smaller than one standard error in most cases.
Note that the bottom panel, which presents difference scores,
depicts only empirical vincentiles.

As one can see, although the frequency effect increases across
vincentiles for both the clear and degraded conditions, word fre-
quency effects are not different for clear and degraded items at any
of the vincentiles. In summary, when legal nonwords are used in
lexical decision, stimulus quality and word frequency produce
robust additive effects in RT means and distributional character-
istics, along with accuracy, a pattern that is consistent with the
available literature. We now turn to experiments that explore this
interaction in the context of pseudohomophones.

5 In preliminary analyses, we plotted the vincentiles using 7, 10, and 15
vincentiles. The same trends emerged regardless of the number of vincen-
tiles. We decided to use 7 vincentiles to maximize the reliability of each
vincentile. For each participant, this allows each vincentile to be based on
approximately 6 RT trials (after eliminating error and outlier trials), given
that there are 50 trials per condition.

Figure 1. Lexical decision performance from Experiment 1 (legal non-
word context) as a function of word frequency and vincentiles in the clear
(top panel) and degraded (middle panel) conditions, along with frequency
effects as a function of vincentiles (bottom panel). In the top and middle
panels, participants’ mean vincentiles (f � high frequency, Œ� low
frequency) are represented by data points and standard error bars. Best-
fitting ex-Gaussian vincentiles are represented by lines (solid line � high
frequency, dashed line � low frequency).
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Experiment 2

Results

In Experiment 2, the overall error rate was 7.7%, and data
trimming eliminated an additional 2.6% of the trials. The mean
response latencies, accuracy, ex-Gaussian parameters, vari-
ances, and third cumulants for Experiment 2 are presented in
Table 3.

Mean response latencies and accuracy. The ANOVA on mean
response latencies yielded significant main effects of stimulus
quality, Fp(1, 55) � 158.22, p � .001, MSE � 5,850.34, �2 � .74;
Fi(1, 198) � 442.81, p � .001, MSE � 3,941.15, �2 � .69, and
word frequency, Fp(1, 55) � 79.54, p � .001, MSE � 3,225.16,
�2 � .59; Fi(1, 198) � 76.77, p � .001, MSE � 10,184.26, �2

�.28. The stimulus quality � word frequency interaction was not
significant, either by participants or by items (Fp and Fi � 1).
Turning to accuracy, the main effects of stimulus quality, Fp(1,
55) � 24.68, p � .001, MSE � .0014, �2 � .31; Fi(1, 198) �
36.33, p � .001, MSE � .0017, �2 � .16, and word frequency,
Fp(1, 55) � 86.12, p � .001, MSE � .0021, �2 � .61; Fi(1, 198) �
28.48, p � .001, MSE � .014, �2 � .13, were significant. The
interaction between stimulus quality and word frequency was not
significant, either by participants ( p � .30) or by items ( p � .23).

Variance and third cumulant. For variance, the main effects of
stimulus quality, F(1, 55) � 38.17, p � .001, MSE � 2.20E � 09,
�2 � .41, and word frequency, F(1, 55) � 10.19, p � .002, MSE �
6.54E � 08, �2 � .16, were significant; the variance was larger for
degraded words and low-frequency words. The interaction was not
significant, F � 1. For the third cumulant, only the main effect of
stimulus quality was significant, F(1, 55) � 13.94, p � .001,
MSE � 2.79E � 15, �2 � .20; the third cumulant was larger for
degraded words. The main effect of frequency and the interaction
were not significant, Fs � 1.

Ex-Gaussian analyses. For �, the main effects of stimulus
quality, F(1, 55) � 84.35, p � .001, MSE � 1,738.92, �2 � .61,
and word frequency, F(1, 55) � 65.29, p � .001, MSE � 1,182.50,
�2 � .54, were significant. Importantly, the stimulus quality �
word frequency interaction was now significant, F(1, 55) � 6.05,
p � .017, MSE � 1,106.37, �2 � .10, with larger frequency effects
for degraded words. Turning to �, the main effect of word fre-

quency was significant, F(1, 55) � 11.62, p � .001, MSE �
547.65, �2 � .17; the interaction between stimulus quality and
word frequency was marginal, F(1, 55) � 3.88, p � .054, MSE �
849.55, �2 � .07, with larger frequency effects for degraded
words. Turning to �, the main effects of stimulus quality, F(1,
55) � 65.70, p � .001, MSE � 5,034.61, �2 � .54, and word
frequency, F(1, 55) � 21.83, p � .001, MSE � 2,563.92, �2 � .28,
were significant, but the stimulus quality � word frequency inter-
action was not significant ( p � .22). Although the stimulus qual-
ity � word frequency interaction was not significant in �, it is
noteworthy that the effect of frequency was actually larger in the
clear condition than in the degraded condition, which is precisely
opposite to the pattern obtained in � and �.

Vincentile analyses. The magnitudes of the frequency effect
across the different vincentiles are plotted in Figure 2 (bottom
panel). In the presence of pseudohomophones, degraded words
show a larger frequency effect than clear words, particularly in the
early and modal vincentiles. This trend reverses in the final vin-
centile, where clear words show a larger frequency effect than
degraded words. This is consistent with the nonsignificant ten-
dency in �, noted above. Hence, the opposing effects in the early
and late vincentiles create additive effects at the level of the mean.

In summary, at the level of the mean, large additive effects of
stimulus quality and word frequency were obtained in both Ex-
periments 1 and 2. Importantly, at the level of distributional
characteristics, the two experiments yielded different patterns. In
Experiment 1, which used legal nonword foils, additivity was
demonstrated in both means and distributional characteristics. In
Experiment 2, which used pseudohomophone foils, stimulus qual-
ity and word frequency interacted in �, with larger frequency
effects for degraded words. The vincentile analyses also confirmed
that frequency effects were larger for degraded words in the early
vincentiles. Collectively, these results suggest that when distribu-
tional characteristics are considered, one does not obtain unam-
biguous additivity between stimulus quality and word frequency in
the presence of pseudohomophones. Instead, for the fastest and
modal RTs, a larger frequency effect is obtained for degraded
words; this trend is offset by an opposing effect in the slowest RTs.
As noted above, such tradeoffs in distributional characteristics
have been observed before (see Heathcote et al., 1991, and Spieler

Table 3
Means of Participants’ Lexical Decision Response Time Means, Accuracy, Variance, Third Cumulant, and Ex-Gaussian Parameter
Estimates as a Function of Stimulus Quality and Word Frequency in Experiment 2, Pseudohomophone Background

Stimulus quality/word
frequency M % Errors Mu Sigma Tau Var 3rd cum

Clear
High-frequency words 612 2.3 476 44 138 3.01E � 04 1.94E � 07
Low-frequency Words 678 7.5 502 47 177 4.40E � 04 2.45E � 07
Frequency effect 66 5.2 26 3 39 1.39E � 04 5.11E � 06

Degraded
High-frequency words 738 4.3 516 40 222 7.19E � 04 5.11E � 07
Low-frequency Words 809 10.4 564 58 246 7.97E � 04 4.55E � 07
Frequency effect 71 6.1 48 18 24 7.87E � 03 	5.59E � 06

Interaction 5 0.9 22 15 	15 	6.07E � 03 	1.07E � 07
Nonwords

Clear pseudohomophones 749 7.9 564 52 187
Degraded pseudohomophones 912 10.5 625 74 288
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et al., 1996). However, because of the theoretical importance of
such a pattern, we decided to establish its stability by attempting to
replicate the results from Experiment 2 in two distinct populations
(Experiment 3, University at Albany, and Experiment 4, Univer-
sity of Waterloo), which produced varying levels of performance
in the LDT.

Experiment 3

Results

The overall error rate was 11.3%, and data trimming eliminated
an additional 4.3% of the trials. The mean response latencies,
accuracy, ex-Gaussian parameters, variances, and third cumulants
for Experiment 3 are presented in Table 4.

Mean response latencies and accuracy. The ANOVA on mean
response latencies yielded significant main effects of stimulus
quality, Fp(1, 27) � 92.89, p � .001, MSE � 12,773.26, �2 � .78;
Fi(1, 198) � 299.50, p � .001, MSE � 13,001.93, �2 � .60, and
word frequency, Fp(1, 27) � 70.38, p � .001, MSE � 4,498.66,
�2 � .72; Fi(1, 198) � 56.21, p � .001, MSE � 23,168.92, �2

�.22. The stimulus quality � word frequency interaction was not
significant, either by participants or by items (Fp and Fi � 1).
Turning to accuracy, the main effect of stimulus quality ap-
proached significance, Fp(1, 27) � 3.84, p � .06, MSE � .0038,
�2 � .13; Fi(1, 198) � 9.59, p � .002, MSE � .0055, �2 � .05,
whereas the main effect of word frequency was significant, Fp(1,
27) � 50.70, p � .001, MSE � .0038, �2 � .65; Fi(1, 198) �
35.85, p � .001, MSE � .019, �2 � .15. The interaction between
stimulus quality and word frequency was not significant, either by
participants or by items (Fp and Fi � 1).

Variance and third cumulant. For variance, the main effects of
stimulus quality, F(1, 27) � 16.35, p � .001, MSE � 5.17E � 09,
�2 � .38, and word frequency, F(1, 27) � 5.21, p � .031, MSE �
2.39E � 09, �2 � .16, were significant; the variance was larger for
degraded words and low-frequency words. The interaction ap-
proached significance, p � .094, with smaller frequency effects for
degraded words. For the third cumulant, both the main effects of
stimulus quality ( p � .326) and word frequency (F � 1) were not
significant. The interaction showed a trend towards significance,
F(1, 27) � 2.41, p � .132, with smaller frequency effects for
degraded words. As we shall see below, both these trends were
consistent with additional aspects of the distributional analyses.

Ex-Gaussian analyses. For �, the main effects of stimulus
quality, F(1, 27) � 16.35, p � .001, MSE � 5,860.69, �2 � .65,
and word frequency, F(1, 27) � 15.01, p � .001, MSE � 9,673.49,
�2 � .36, were significant. The stimulus quality � word frequency
interaction was significant, F(1, 27) � 6.55, p � .016, MSE �
3,232.73, �2 � .20, with larger frequency effects for degraded
words. Turning to �, the main effects of stimulus quality, F(1,
27) � 7.42, p � .011, MSE � 2,006.20, �2 � .22, and word
frequency, F(1, 27) � 10.84, p � .003, MSE � 5,127.78, �2 � .29,
were significant. The interaction was significant, F(1, 27) � 4.16,
p � .05, MSE � 2,154.51, �2 � .13, with larger frequency effects
in the degraded condition. Turning to �, the main effect of stimulus
quality was significant, F(1, 27) � 31.20, p � .001, MSE �
9,792.24, �2 � .54, whereas the effect of word frequency ap-
proached significance, F(1, 27) � 3.71, p � .065, MSE �
10,525.34, �2 � .12. The stimulus quality � word frequency
interaction also approached significance, F(1, 27) � 3.93, p �
.058, MSE � 7,763.73, �2 � .13, with significant simple effects of
frequency in the clear ( p � .001), but not the degraded (t � 1),
condition. As in Experiment 2, the stimulus quality � word
frequency interaction was significant for �; but, in addition, the
interaction was also borderline significant for � and �.

Figure 2. Lexical decision performance from Experiment 2 (pseudo-
homophone context) as a function of word frequency and vincentiles in the
clear (top panel) and degraded (middle panel) conditions, along with
frequency effects as a function of vincentiles (bottom panel). In the top and
middle panels, participants’ mean vincentiles (f � high frequency, Œ �
low frequency) are represented by data points and standard error bars.
Best-fitting ex-Gaussian vincentiles are represented by lines (solid line �
high frequency, dashed line � low frequency).
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Vincentile analyses. The magnitudes of the frequency effect
across the different vincentiles are plotted in Figure 3 (bottom
panel). As in Experiment 2, there is a larger frequency effect for
degraded words in the fast vincentiles, and this trend reverses
sharply in the final vincentiles. This pattern is also very consistent
with the tradeoffs in the ex-Gaussian parameters, and the trends in
the relatively unstable higher order cumulants. These opposing
effects again create the overall additive effects at the level of the
mean. Because of the theoretical importance of tradeoffs in RT
distributional characteristics, we attempted to replicate this pattern
at a third university.

Experiment 4

Results

The overall error rate was 11.4%, and data trimming eliminated
an additional 3.5% of the trials. The mean response latencies,
accuracy, ex-Gaussian parameters, variances, and third cumulants
for Experiment 4 are presented in Table 5.

Mean response latencies and accuracy. The ANOVA on mean
response latencies yielded significant main effects of stimulus quality,
Fp(1, 31) � 57.30, p � .001, MSE � 23,256.84, �2 � .65; Fi(1,
198) � 505.94, p � .001, MSE � 8,145.96, �2 � .72, and word
frequency, Fp(1, 31) � 64.09, p � .001, MSE � 5,078.49, �2 � .67;
Fi(1, 198) � 67.14, p � .001, MSE � 17,947.67, �2 �.25. The
stimulus quality � word frequency interaction was not significant,
either by participants or by items (Fp and Fi � 1). Turning to
accuracy, the main effects of stimulus quality, Fp(1, 31) � 72.39, p �
.001, MSE � .0020, �2 � .70; Fi(1, 198) � 75.59, p � .001, MSE �
.0059, �2 � .28, and word frequency, Fp(1, 31) � 67.03, p � .001,
MSE � .0036, �2 � .68; Fi(1, 198) � 40.00, p � .001, MSE � .019,
�2 � .17, were significant. The interaction between stimulus quality
and word frequency was borderline significant by participants ( p �
.053) but not by items ( p � .124).

Variance and third cumulant. For variance, the main effects of
stimulus quality, F(1, 31) � 23.26, p � .001, MSE � 5.01E � 09,
�2 � .43, and word frequency, F(1, 31) � 9.64, p � .004, MSE �
1.33E � 09, �2 � .24, were significant; the variance was larger for
degraded words and low-frequency words. The interaction was not
significant, F � 1. For the third cumulant, only the main effect of

stimulus quality was significant, F(1, 31) � 11.17, p � .002,
MSE � 1.99E � 15, �2 � .27; the third cumulant was larger for
degraded words. The main effect of frequency ( p � .307) and the
interaction (F � 1) were not significant.

Ex-Gaussian analyses. For �, the main effects of stimulus
quality, F(1, 31) � 48.77, p � .001, MSE � 6,093.32, �2 � .61,
and word frequency, F(1, 31) � 76.06, p � .001, MSE � 1,494.41,
�2 � .71, were significant. The stimulus quality � word frequency
interaction was again significant, F(1, 31) � 5.17, p � .030,
MSE � 2,641.78, �2 � .14, with larger frequency effects for the
degraded words. Turning to �, the main effects of stimulus quality,
F(1, 31) � 10.84, p � .002, MSE � 3,512.34, �2 � .26, and word
frequency, F(1, 31) � 9.18, p � .005, MSE � 1,407.75, �2 � .23,
were significant. The interaction approached significance, F(1,
31) � 2.96, p � .096, MSE � 2,402.63, �2 � .09, with larger
frequency effects in the degraded condition. Turning to �, the main
effects of stimulus quality, F(1, 31) � 36.59, p � .001, MSE �
10,696.82, �2 � .54, and word frequency, F(1, 31) � 14.15, p �
.001, MSE � 3,827.70, �2 � .31, were significant. The stimulus
quality � word frequency interaction showed a trend towards
significance, F(1, 31) � 2.52, p � .123, with significant simple
effects of frequency in the clear ( p � .001), but not the degraded
( p � .098), condition. In summary, the stimulus quality � word
frequency interaction was significant for �, and approached sig-
nificance for � and �.

Vincentile analyses. The magnitudes of the frequency effect
across the different vincentiles are plotted in Figure 4 (bottom panel).
As in Experiments 2 and 3, there is a larger frequency effect for
degraded words in the fast vincentiles, and this trend reverses in the
final vincentiles, creating additivity at the level of the mean. In
general, Experiment 4 replicates the empirical pattern observed in
Experiments 2 and 3, supporting the robustness of the tradeoffs.

Composite Analyses

Because participants in Experiments 2, 3, and 4 were presented
with the same set of items, we also conducted composite analyses
that combined the data of the 116 participants across the three
experiments, with university as a between-participant variable and
stimulus quality and frequency as within-participant variables.

Table 4
Means of Participants’ Lexical Decision Response Time Means, Accuracy, Variance, Third Cumulant, and Ex-Gaussian Parameter
Estimates as a Function of Stimulus Quality and Word Frequency in Experiment 3, Pseudohomophone Background

Stimulus quality/word
frequency M % Errors Mu Sigma Tau Var 3rd cum

Clear
High-frequency words 732 3.1 507 52 227 8.56E � 04 6.61E � 07
Low-frequency Words 844 11.1 552 79 297 1.22E � 05 7.92E � 07
Frequency effect 112 8 45 27 70 3.64E � 04 1.31E � 07

Degraded
High-frequency words 944 5.1 582 57 364 1.56E � 05 9.64E � 07
Low-frequency Words 1044 13.6 682 120 369 1.62E � 05 7.76E � 07
Frequency effect 100 8.5 100 63 5 5.79E � 03 	1.88E � 07

Interaction 	12 0.5 55 36 	65 	3.06E � 04 	3.19E � 07
Nonwords

Clear pseudohomophones 970 13.1 676 108 294
Degraded pseudohomophones 1232 15.4 862 211 372
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This was done in order to maximize power and to establish the
reliability of the observed distributional effects across three sets of
participants who are associated with different lexical decision
profiles. Table 6 presents the mean response latencies, accuracy,
and ex-Gaussian parameters for these analyses, collapsing across
Experiments 2 to 4.

Mean response latencies and accuracy. The ANOVA on mean
response latencies yielded significant main effects of stimulus quality,

F(1, 113) � 278.39, p � .001, MSE � 12,279.72, �2 � .71, and word
frequency, F(1, 113) � 220.60, p � .001, MSE � 4,037.88, �2 � .66.
The stimulus quality � word frequency interaction was not signifi-
cant, F � 1. University interacted significantly with stimulus quality
( p � .002) and frequency ( p � .012). Compared to the participants
in Washington University (Experiment 2), participants in University
at Albany (Experiment 3) and the University of Waterloo (Experi-
ment 4) produced larger main effects of stimulus quality and word
frequency in means. Importantly, the three-way interaction between
university, stimulus quality, and word frequency was not significant
(F � 1), indicating that additive effects of stimulus quality and word
frequency were replicated across sites.

Turning to accuracy, the main effects of stimulus quality, Fp(1,
113) � 72.45, p � .001, MSE � .0021, �2 � .39, and word
frequency, Fp(1, 113) � 207.78, p � .001, MSE � .0029, �2 �
.65, were significant. The interaction between stimulus quality and
word frequency was borderline significant ( p � .053), with larger
frequency effects for degraded words. University interacted sig-
nificantly with stimulus quality ( p � .001) and frequency ( p �
.019). For stimulus quality, participants in Experiment 4 produced
a larger main effect than participants in Experiment 2 and Exper-
iment 3; for frequency, participants in Experiment 3 and Experi-
ment 4 produced a larger main effect than participants in Experi-
ment 2. The three-way interaction between university, stimulus
quality, and word frequency was not significant (F � 1).

Variance and third cumulant. For variance, the main effects of
stimulus quality, F(1, 113) � 75.97, p � .001, MSE � 3.68E �
09, �2 � .40, and word frequency, F(1, 113) � 25.44, p � .001,
MSE � 1.26E � 09, �2 � .18, were significant; the variance was
larger for degraded words and low-frequency words. The interac-
tion approached significance ( p � .106), with smaller frequency
effects for degraded words. For the third cumulant, the main effect
of stimulus quality was significant, F(1, 113) � 16.16, p � .001,
MSE � 3.28E � 15, �2 � .13; the third cumulant was larger for
degraded words. Although not significant, F(1, 113) � 1.98, p �
.163, the interaction in the third cumulant also indicated smaller
frequency effects for degraded than clear words. Again, as ex-
pected, the high variability in these measures does not allow strong
inferences to be made. University did not interact significantly
with any other variable in both cumulants.

Ex-Gaussian analyses. For �, the main effects of stimulus
quality, F(1, 113) � 188.06, p � .001, MSE � 3,918.34, �2 � .63,
and word frequency, F(1, 113) � 101.82, p � .001, MSE �
3,296.89, �2 � .47, were significant. The stimulus quality � word
frequency interaction was significant, F(1, 113) � 20.22, p �
.001, MSE � 2,035.66, �2 � .15, with larger frequency effects for
the degraded words. University interacted significantly with stim-
ulus quality ( p � .001) and frequency ( p � .024). Compared to
the participants in Experiment 2, participants in Experiment 3 and
Experiment 4 produced larger main effects of stimulus quality and
word frequency in �. The three-way interaction between univer-
sity, stimulus quality, and word frequency was not significant
( p � .26), indicating that the same interaction between stimulus
quality and word frequency was present across sites.

Turning to �, the main effects of stimulus quality, F(1, 113) �
22.69, p � .001, MSE � 1,942.11, �2 � .17, and word frequency,
F(1, 113) � 35.61, p � .001, MSE � 1,877.97, �2 � .24, were
significant. The stimulus quality � word frequency interaction was
significant, F(1, 113) � 12.16, p � .001, MSE � 1,587.42, �2 �

Figure 3. Lexical decision performance from Experiment 3 (pseudo-
homophone context) as a function of word frequency and vincentiles in the
clear (top panel) and degraded (middle panel) conditions, along with
frequency effects as a function of vincentiles (bottom panel). In the top and
middle panels, participants’ mean vincentiles (f � high frequency, Œ �
low frequency) are represented by data points and standard error bars.
Best-fitting ex-Gaussian vincentiles are represented by lines (solid line �
high frequency, dashed line � low frequency).
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.10, with larger frequency effects in the degraded condition. Uni-
versity interacted significantly with stimulus quality ( p � .006)
and frequency ( p � .004). Compared to the participants in Exper-
iment 2, participants in Experiment 3 and Experiment 4 produced
larger main effects of stimulus quality and word frequency in �.
The three-way interaction was not significant, F � 1.

Turning to �, the main effects of stimulus quality, F(1, 113) �
130.04, p � .001, MSE � 7,724.74, �2 � .54, and word frequency,
F(1, 113) � 29.70, p � .001, MSE � 4,812.90, �2 � .21, were
significant. The stimulus quality � word frequency interaction was
significant, F(1, 113) � 9.78, p � .002, MSE � 3,816.32, �2 � .08,
with larger frequency effects in the clear condition. University did not
interact with either stimulus quality ( p � .166) or frequency ( p �
.82). The three-way interaction was not significant, p � .220.

In summary, stimulus quality and word frequency were additive in
means but interactive in all three ex-Gaussian parameters. Compared
to clear words, degraded words produced larger frequency effects in
� and �, which reflect the modal part of the distribution, but smaller
frequency effects in �, which reflects the tail of the distribution; this is
consistent with the results of the individual experiments. The three-
way interaction between university, stimulus quality, and frequency
was not significant in any of the parameters, indicating that the same
distributional tradeoffs were observed at all three sites. This is all the
more impressive given the variability in lexical decision performance
across the different participant populations. Specifically, compared to
participants in Experiment 2, participants in Experiment 3 and Ex-
periment 4 were producing larger main effects of stimulus quality and
word frequency in means, accuracy, �, and �.

Vincentile analyses. The magnitudes of the frequency effect
across the different vincentiles are plotted in Figure 5 (bottom
panel), collapsed across all 116 participants. In line with the
previous analyses, there is a larger frequency effect for degraded
words in the fast vincentiles, and this trend reverses in the slowest
vincentiles. More importantly, these opposing effects produce ad-
ditivity in the analysis of means. We explored these effects by
conducting an ANOVA with stimulus quality, word frequency,
and vincentiles as within-participant variables. Interestingly, even
with a Greenhouse-Geisser correction to compensate for potential
violation of sphericity, the three-way interaction between stimulus
quality, word frequency, and vincentiles was significant,

F(1.79,205.73) � 6.26, p � .003, MSE � 7,602.17, �2 � .05,
confirming that the shape of the frequency effect in the clear condition
is markedly different from its counterpart in the degraded condition.
To probe the three-way interaction, we separately examined the
effects of stimulus quality and word frequency in the three fastest
vincentiles versus the slowest vincentile. In the analysis based on the
three fastest vincentiles, the interaction between stimulus quality and
word frequency was significant, F(1, 115) � 7.08, p � .009, MSE �
2,717.69, �2 � .06, with larger frequency effects for degraded words.
In the analysis using the slowest vincentile, the interaction between
stimulus quality and word frequency was also significant but in the
opposite direction, F(1, 115) � 4.15, p � .044, MSE � 13,242.66,
�2 � .04; frequency effects were now larger for clear words. It is
indeed noteworthy that ex-Gaussian and vincentile analyses, two very
different approaches for examining RT distributions, converge on
such similar conclusions.

General Discussion

This is the first study to examine the joint effects of stimulus
quality and word frequency as a function of nonword type, using
both conventional and distributional analyses, and the main find-
ings can be summarized succinctly. In Experiment 1, using an
LDT with legal nonword distracters (e.g., FLIRP), the joint effects
of stimulus quality and word frequency were additive in means,
accuracy, and distributional characteristics. These findings are
compatible with the extant literature (Plourde & Besner, 1997; Yap
& Balota, 2007). More intriguingly, when pseudohomophones
(e.g., BRANE) were used as foils (Experiments 2, 3, and 4),
opposing interactive effects in the underlying distributions were
observed, producing apparent additivity at the level of the mean.
This same basic pattern was reproduced in three experiments
across three different universities, attesting both to the robustness
of the effect and to the stability of RT distributional measures.
Specifically, the composite analyses revealed that stimulus quality
and word frequency interacted significantly in � and �, with larger
frequency effects for degraded words. This interactive trend in �
(reflecting modal RTs) was offset by an opposing pattern in �
(reflecting slowest RTs), where frequency effects were larger for
clear words. As the mean is the algebraic sum of � and �, these

Table 5
Means of Participants’ Lexical Decision Response Time Means, Accuracy, Variance, Third Cumulant, and Ex-Gaussian Parameter
Estimates as a Function of Stimulus Quality and Word Frequency in Experiment 4, Pseudohomophone Background

Stimulus quality/word
frequency M % Errors Mu Sigma Tau Var 3rd cum

Clear
High-frequency words 658 2.5 503 42 156 4.08E � 04 2.49E � 07
Low-frequency Words 753 10 542 47 212 5.84E � 04 2.67E � 07
Frequency effect 95 7.5 39 5 56 1.77E � 04 1.75E � 06

Degraded
High-frequency words 856 8 579 62 282 9.88E � 04 4.80E � 07
Low-frequency Words 963 17.9 659 97 308 1.21E � 05 5.63E � 07
Frequency effect 107 9.9 80 35 26 2.24E � 04 8.27E � 06

Interaction 12 2.4 41 30 	30 4.71E � 03 6.52E � 06
Nonwords

Clear pseudohomophones 824 10 621 60 205
Degraded pseudohomophones 1163 17.9 869 172 297
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effects offset each other to produce additive effects in means. It is
noteworthy that the same distributional tradeoffs were produced by
distinct participant populations that varied along a number of
dimensions, including overall response latency and accuracy (see
Tables 3–5), Shipley vocabulary scores (see Table 1), and the
magnitude of stimulus quality and frequency effects.

These data indicate that the joint effects of factors in means can
be dissociated from joint effects in distributional characteristics.
The trade-off between � and � is strikingly similar to the Stroop
color-naming performance data reported by Heathcote et al. (1991)
and Spieler et al. (1996). As discussed at the beginning of this
article, they observed no difference between the congruent and
baseline conditions in mean RTs, but ex-Gaussian analyses re-
vealed that this null effect was spuriously produced by opposing
effects in � and �. Likewise, in Experiments 2 to 4, the apparent
additivity in means was driven by countervailing interactive ef-
fects in � and �, trends which are also reflected by the vincentile
plots (see Figures 2 to 5). This is markedly different from Exper-
iment 1, where the additivity in means was mirrored identically in
ex-Gaussian parameters and vincentiles.

For ease of exposition, our discussion has, thus far, focused on
how effects in means can be partitioned into � and � effects. This
is, of course, an oversimplification. For example, one could argue
that in ex-Gaussian analyses, � and � are not truly independent
parameters. As mentioned in the Are Additive Effects Task-
Specific section, the mean is the algebraic sum of � and �,
suggesting that any effect on � will necessarily also have an effect
on �. This could be responsible for the trade-off between � and �.
Specifically, increased effects in � could be accompanied by
decreased effects in �, which is the pattern observed in Experi-
ments 2 to 4. We do not believe this to be a problem in the present
analyses. First, the trade-off was only demonstrated when
pseudohomophones, but not legal nonwords, were used. A fitting
artifact should manifest itself in both nonword type conditions.
Second, when we examined the correlations between � and �
estimates across Experiments 2 to 4, the correlations were always
positive, which is inconsistent with a trade-off.

In addition, it is important to note that ex-Gaussian fits yield a �
parameter that reflects variability of the modal RTs. The composite
analyses indicate that when pseudohomophones were present, stimu-
lus quality and frequency interacted significantly in �, with larger
frequency effects in degraded words. This interaction qualifies the
interpretation that additive effects in means are due entirely to a
trade-off between � and �. To see why this is the case, consider Table
6, which indicates a 24 ms interaction in �. As can be seen, the �
frequency effect is much larger in degraded words (34 ms) than in
clear words (10 ms), and this is driven primarily by a large � for
degraded low-frequency words. Because the estimate for � (the stan-
dard deviation of the modal RTs) is disproportionately high for
degraded low-frequency words, the estimate for � will be correspond-
ingly lowered, because there is effectively less skew to model. This
will attenuate the � frequency effect for degraded words.

There is always the possibility that the results from an RT
distributional analytic procedure can be influenced by the partic-
ular model that is being fitted or the fitting process (Luce, 1986;
Van Zandt, 2000, 2002). Although the � interaction is certainly
responsible for part of the trade-off between � and �, it is also very
clear that the opposing effects cannot be fully explained away as a
consequence of the fitting procedure. Here is where the vincentile
analyses are useful. In particular, the vincentile analyses reveal
precisely the same empirical pattern (see Figure 5); and, as men-
tioned, vincentizing is a nonparametric technique that plots raw
data directly without making any assumptions about the true
underlying RT distribution. Hence, we are confident about the
observed trade-off in the present results, although we do recom-

Figure 4. Lexical decision performance from Experiment 4
(pseudohomophone context) as a function of word frequency and vincen-
tiles in the clear (top panel) and degraded (middle panel) conditions, along
with frequency effects as a function of vincentiles (bottom panel). In the
top and middle panels, participants’ mean vincentiles (f � high frequency,
Œ� low frequency) are represented by data points and standard error bars.
Best-fitting ex-Gaussian vincentiles are represented by lines (solid line �
high frequency, dashed line � low frequency).
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mend that all three parameters should be considered when inter-
preting the results of ex-Gaussian analyses and that vincentile plots
should be examined for evidence of convergence or divergence
(see Balota et al., in press, for further discussion of advantages and
possible constraints in RT distributional analyses).

Foil Type Modulates the Relation Between Stimulus
Quality and Word Frequency

The additive effects of stimulus quality and word frequency
have traditionally been considered one of the most robust
benchmarks in the word recognition literature. However, the
generality of this finding is an issue. As noted, Yap and Balota
(2007) have demonstrated that although additive effects are
clearly obtained in lexical decision performance, one instead
observes interactive effects in other word identification para-
digms such as speeded pronunciation (replicated by O’Malley
et al., 2007) and semantic classification. Moreover, the nature
of the interaction, larger frequency effects for degraded words,
is exactly the pattern predicted by leading computational mod-
els of word recognition, such as a parallel distributed process-
ing model (Plaut et al., 1996), the dual route cascaded model
(Coltheart et al., 2001), and the multiple read-out model
(Grainger & Jacobs, 1996). This suggests that discrete stages,
the traditional interpretation of additive effects, may not be a
fixed property of word recognition processing dynamics but
may instead reflect processes that are specific to the LDT.
Specifically, lexical decision, unlike other word recognition
tasks, places a premium on familiarity-based information for
discriminating between words and nonwords (Balota & Chum-
bley, 1984; Balota & Spieler, 1999; Besner, 1983). Stimulus
degradation undermines this familiarity, making it necessary for
degraded words to undergo an additional normalization procedure prior
to word identification. In speeded pronunciation, where familiarity is not
useful for driving responses, one would not expect additive effects, which
is indeed what Yap and Balota and O’Malley et al. reported. Furthermore,
Yap and Balota also reported an interaction in semantic classification,
where familiarity discrimination is also unlikely to play a role.

The departure point of the present experiments was the examina-
tion of lexical decision performance when pseudohomophones are

used as foils. As discussed earlier, all previous studies investigating
the joint effects of stimulus quality and word frequency have used
legal nonwords, which allows familiarity to function as a viable
dimension for word–nonword discrimination. In the context of
pseudohomophones, which are orthographically legal and phonolog-
ically very similar to real words, the utility of familiarity for driving
lexical decision responses is undermined. One expects the lexical
decision mechanism to rely less on global lexical activity (a proxy for
familiarity) and more on the activation levels of individual represen-
tations, making the LDT functionally more similar to speeded pro-
nunciation and semantic classification. Hence, when familiarity is
deemphasized in lexical decision, the early normalization stage and its
attendant additive effects may no longer be mandatory. Instead, stim-
ulus quality and frequency should interact, just as it does in other word
recognition tasks (Yap & Balota, 2007).

Our results indicate that the type of nonword used in an LDT
does modulate the joint effects of stimulus quality and frequency.
When pseudohomophones are used, additive effects are seen in
means, but this additivity is obscuring other effects at the level of
the underlying RT distributions. In fact, the ex-Gaussian analyses
on the composite data from Experiments 2–4 indicate that stimulus
quality and word frequency interact significantly in � and � (see
Table 6), with larger frequency effects for degraded words. This is
precisely the predicted theoretical pattern from most computa-
tional models of lexical decision performance. Importantly, the
corresponding vincentile plot also shows significantly larger fre-
quency effects for degraded words in the early and modal vincen-
tiles (see Figure 5). Indeed, follow-up tests based on data from the
three fastest vincentiles (i.e., approximately the fastest 40% of the
responses) indicate a significant interaction between stimulus qual-
ity and word frequency. This pattern, obtained across three uni-
versities, is particularly noteworthy because when legal nonwords
(e.g., FLIRP) are used, the two factors are unequivocally additive
in �. One sees this not only in Experiment 1 but also in other
studies featuring distributional analysis (Plourde & Besner, 1997;
Yap & Balota, 2007). These results suggest that when familiarity-
based information is less useful for driving lexical decisions,
interactive effects of stimulus quality and word frequency can be
detected in the modal portion of the RT distribution.

Table 6
Means of Participants’ Lexical Decision Response Time Means, Accuracy, Variance, Third Cumulant, and Ex-Gaussian Parameter
Estimates as a Function of Stimulus Quality and Word Frequency Collapsed Across Experiments 2, 3, and 4,
Pseudohomophone Background

Stimulus quality/word
frequency M % Errors Mu Sigma Tau Var 3rd cum

Clear
High-frequency words 654 2.5 491 45 164 4.64E � 04 3.22E � 07
Low-frequency Words 739 9 525 55 216 6.68E � 04 3.83E � 07
Frequency effect 85 6.5 34 10 52 2.04E � 04 6.12E � 06

Degraded
High-frequency words 821 5.5 549 50 273 9.96E � 04 6.12E � 07
Low-frequency Words 908 13.3 619 84 293 1.11E � 05 5.62E � 07
Frequency effect 87 7.8 70 34 20 1.14E � 04 	4.96E � 06

Interaction 2 1.3 36 24 	32 	9.03E � 03 	1.11E � 07
Nonwords

Clear pseudohomophones 823 9.7 590 59 233
Degraded pseudohomophones 1059 13.7 723 112 336
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Why Are Frequency Effects Smaller for Degraded Items
in the Later Vincentiles?

One of the most interesting aspects of this study was the obser-
vation that although degraded words show larger frequency effects

for the faster and modal RTs, this pattern abruptly reverses itself in
the slowest RTs. The larger frequency effects for clear items in the
slowest vincentiles offset the larger frequency effects for degraded
items in the earlier vincentiles, effectively producing additive
effects at the level of the mean. There are two ways one might
accommodate this counterintuitive finding. First, these effects may
reflect additional task-specific checking processes, which in this
context refer to postlexical attention-demanding analytic processes
(e.g., spelling verification or retrieval of semantic referents) that
increase RTs (Balota & Spieler, 1999). Specifically, it is difficult
to discriminate between low-frequency words and pseudohomo-
phones, and so, whether low-frequency words are clearly pre-
sented or visually degraded, it is likely that they will undergo
additional checking. In contrast, this may not apply to high-
frequency words. Whereas degraded high-frequency words might
undergo checking, clearly presented high-frequency words are
sufficiently familiar that they may not require additional checking.
Checking processes are more likely to be reflected in the � com-
ponent or the slowest RTs (Balota & Spieler, 1999), and this
account predicts larger frequency effects in the slow RTs for clear
words but more modest frequency effects for degraded words. This
is because clear low-frequency words engage additional checking
processes to a greater extent than clear high-frequency words, but
all degraded items undergo checking, independent of frequency.

Of course, by invoking an additional checking process that
operates after familiarity-based discrimination, the checking ac-
count increases the theoretical complexity of the machinery un-
derlying lexical decision. Indeed, after examining the joint effects
of nonword type (pseudohomophones vs. legal nonwords vs. ille-
gal nonwords) and word frequency using distributional analyses,
Yap et al. (2006) argued that the overall pattern of results was
more consistent with a single-process random-walk model than a
two-stage model that incorporated familiarity-based and checking
processes (Balota & Spieler, 1999). We have three responses to
this. First, although Yap et al. implemented a particular instantia-
tion of a two-process model, their results obviously do not rule out
two-process models in general (see their discussion on p. 1341).
Second, the primary data that distinguished the two-process ac-
count from the random-walk perspective in Yap et al. (2006) came
from the illegal nonword condition (e.g., XNIV). It is possible that
lexical decision performance in that condition is qualitatively
outside the scope of the standard LDT, because participants may
be making orthographic legality decisions. Third, and most impor-
tantly, the constellation of findings in the present study presents an
important challenge to any one-process model. We are not aware
of any single-process model that has explicitly simulated opposing
effects in different portions of the RT distribution. For example,
consider the diffusion model, which suggests that lexical decision
reflects the unitary accumulation of noisy evidence over time.
Based on the geometry of the diffusion process, one would expect
any effect observed in fast RTs to stay either the same size or
become larger in slow RTs. Hence, going from fast to slow RTs,
it should not be possible for an effect to become smaller in
magnitude, much less reverse in direction. Yet, this is the precise
empirical pattern we have observed across three experiments.
Although the diffusion model has been remarkably successful in
accounting for aspects of lexical decision performance (Ratcliff et
al., 2004; Yap et al., 2006), we would argue that there are instances
where two (or perhaps more) processes need to be invoked. For

Figure 5. Lexical decision performance collapsed across Experiments
2–4 (pseudohomophone context) as a function of word frequency and
vincentiles in the clear (top panel) and degraded (middle panel) conditions,
along with frequency effects as a function of vincentiles (bottom panel). In
the top and middle panels, participants’ mean vincentiles (f � high
frequency, Œ � low frequency) are represented by data points and standard
error bars. Best-fitting ex-Gaussian vincentiles are represented by lines
(solid line � high frequency, dashed line � low frequency).
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example, as discussed in the Additive Effects and Models of Word
Recognition section, the diffusion model had difficulty handling
the additive effects of stimulus quality and word frequency in the
presence of legal nonwords (O’Malley et al., 2007; Yap & Balota,
2007), a limitation that applies to other models of lexical decision
performance. Likewise, it is unclear how the diffusion model can
accommodate the consistent opposing interactive effects of stim-
ulus quality and frequency in fast and slow RTs without incorpo-
rating a secondary process.

A second possible explanation for the crossover at the slowest
vincentiles is that there is a temporal deadline or functional ceiling
in lexical decision performance, which the degraded low-
frequency words are up against. When participants are responding
to such items, there is sufficient partial lexical activity to drive a
“word” response when the deadline is reached. This will cause the
slowest responses in the degraded low-frequency condition to be
truncated, reducing distributional skew and attenuating the fre-
quency effect in the slow RTs for the degraded words. Of course,
one might ask why this functional ceiling exists when
pseudohomophones but not legal nonwords are used. Nonword
type affects word latencies in lexical decision; the more similar
nonword foils are to words, the longer word latencies are (Stone &
Van Orden, 1993; Yap et al., 2006). Hence, words in the
pseudohomophone condition, compared to the legal nonword con-
dition, will have longer latencies and are more likely to encounter
the above-mentioned functional ceiling. One problem with the
simple deadline account is that it predicts very little (or no)
variance for the slowest RTs of degraded low-frequency words.
This is inconsistent with the present results where, compared to the
slowest RTs in the other three conditions, the slowest RTs of
degraded low-frequency words were associated with the greatest
variability. Permitting variability in the deadline (à la Coltheart et
al., 2001) might address this, but these explanations are ultimately
post hoc and require independent verification (see Wagenmakers,
Ratcliff, Gomez, & McKoon, 2008, for further discussion of
deadline vs. nondeadline models of lexical decision performance).

Implications for Models of Visual Word Recognition

How do the findings reported in this study inform the compu-
tational dual route cascaded (Coltheart et al., 2001) and multiple
read-out (Grainger & Jacobs, 1996) models, which are able to
carry out lexical decisions? As discussed at the beginning of this
article, these models produce word lexical decisions when either
local or global lexical activity exceeds their respective thresholds.
In general, we are skeptical that these models, which are exten-
sions of the logogen approach, can accommodate the present set of
lexical decision data. In speeded pronunciation at least, simula-
tions of the dual route cascaded model (and by inference, the
architecturally similar multiple read-out model) yield interactive,
not additive, effects of stimulus quality and word frequency (Reyn-
olds & Besner, 2004). In order to produce additive effects in
lexical decision, O’Malley et al. (2007) have suggested modifying
the dual route cascaded model such that the output of the letter
units level is thresholded during lexical decision. That is, activa-
tion does not reach the orthographic input lexicon until activity in
the letter level has reached threshold. Thresholding at the letter
level is of course functionally similar to an early perceptual nor-
malization stage. As we have argued, thresholded processing (or

perceptual normalization) in lexical decision is adaptive because it
allows familiarity-based information to be recovered prior to
word–nonword discrimination. Furthermore, the implication here
is that the dual route cascaded model is sensitive to task demands
and is able to appropriately engage cascaded and thresholded
letter-level processing during speeded pronunciation and lexical
decision, respectively. The preceding account handles additive
effects of stimulus quality and frequency in lexical decision, in
both means and distributional characteristics, which is the pattern
observed when legal nonwords are used as distracters.

This account is complicated by the results of the present study,
which demonstrated that the presence of pseudohomophone foils
produces an interaction between stimulus quality and word fre-
quency in modal RTs, with larger frequency effects for degraded
words. How might the model accommodate this? When word-like
nonwords (i.e., pseudohomophones) are used as foils, global lex-
ical activity is less diagnostic for word–nonword discrimination.
We have suggested that thresholded processing is useful for re-
covering familiarity-based information. In lexical decision con-
texts where the utility of this information is undermined, the model
should revert to cascaded processing, which yields interactive
effects. However, note that this only accounts for interactive
effects in the modal portion of the RT distribution. It is unclear
how one can handle the trade-off in the tail of the distribution
without positing additional checking or deadline-based mecha-
nisms (see the previous section). Finally, we need to emphasize
that the discussion in this section is post hoc and, in some ways,
counterintuitive. A priori, there is no principled reason why any
computational model of visual word recognition would selectively
engage thresholded processing in lexical decision and cascaded
processing in pronunciation. At the very least, these results support
the adaptive nature of subtle characteristics of the lexical process-
ing system to task constraints (Balota & Yap, 2006).

Of course, the account above rests on the assumption that additive
effects of stimulus quality and word frequency are more consistent
with thresholded than cascaded processing. So far, we have argued
that additivity is easier to reconcile with a stage framework, given that
cascade models make incorrect predictions about the relationship
between means and variances (Roberts & Sternberg, 1993). However,
it is important to note that the experimental tasks Roberts and Stern-
berg based their simulations on did not include the LDT, and it is
unclear if the superiority of the stage account holds when one exam-
ines additivity in lexical decision performance. We explored this by
conducting a supplementary analysis on the data in Experiment 1,
where additive effects in means and ex-Gaussian characteristics were
observed. Specifically, we computed the variance-change statistic
proposed by Roberts and Sternberg for adjudicating between the stage
and cascade models; this statistic reflects the ratio of variance effect
size to mean effect size. In the simulations described by Roberts and
Sternberg, cascade models in general yielded variance-change statis-
tics larger than those observed behaviorally in their datasets. Interest-
ingly, based on the variance-change statistic for our dataset, it turns
out that the results in Experiment 1 can also be accommodated by
cascade models. In other words, the clear-cut additivity in Experiment
1 may reflect either thresholded processing (the position we have been
taking) or cascaded processing. Cascade models can produce additive
effects in means and variances, but it is necessary to make additional
assumptions. For example, assume we start out with a two-process
cascade model and process A is selectively influenced by stimulus
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quality whereas process B is selectively influenced by word fre-
quency. For the model to produce stage-like additivity, each process
has to be joined to a fixed slow process that is unaffected by either
stimulus quality or word frequency; this effectively becomes a three-
process model. Specifically, one might have a fast process that is
affected by stimulus quality, followed by a slow process that is
influenced by neither factor, followed by a fast process that is affected
by word frequency.

The important point here is that the additive effects of word
frequency and stimulus quality (with pronounceable nonwords)
should not be taken as evidence that eliminates all possible cascade
models. However, we believe that such accounts of the present
results become quite cumbersome and ad hoc. To produce additive
effects in Experiment 1, one requires a cascade model (e.g., the
three-process model described above) where the two processes of
interest are mated to a slow process that is uninfluenced by both
stimulus quality and frequency. When pseudohomophones are
used, the slow process stops operating, and the model reverts back
to what are functionally two processes, yielding interactive effects
in the modal portion of the RT distribution. As noted, we prefer the
stage model account for the additive effects of word frequency and
degradation for the following reasons: (a) It is relatively simple
and parsimonious, (b) it also accommodates performance in an-
other familiarity-based task (e.g., the additive effects of stimulus
quality and set size observed in memory scanning), and (c) it is
motivated by existing accounts of lexical decision performance.
Most important, when familiarity-based information is disabled by
including pseudohomophones as the nonwords, thereby forcing
individuation of the lexical representations, the system reverts
back to the interactive cascadic processes that are typically en-
gaged in most lexical processing tasks. For the cascaded account to
be equally viable in accounting for the full set of data, a theorist
needs to explain why and how processes in the cascade model are
modulated by nonword type. For example, why would the pres-
ence of legal nonwords engage additional slow processes that are
not modulated by experimental factors? How do the processes
reconfigure themselves in a pseudohomophone context, and what
might be the reason for this? A modeler trying to simulate these
processes faces the additional hurdles of having to explicitly
specify which factors influence which processes and to consider
other parameters like the shape, location, and spread of the re-
sponse criterion’s distribution, as well as the specific activation
function mediating input and output (Roberts & Sternberg, 1993).

Mapping Distributional Characteristics Onto Cognitive
Processes

Based on the foregoing discussion, it may be tempting to con-
clude that lexical retrieval processes are reflected by the � com-
ponent and the fast and modal RTs, whereas postlexical checking
processes are reflected by the � component and the slowest RTs.
This view is seductive, but clearly oversimplistic. Although some
early theorists attempted to map specific processes onto different
distributional parameters (Hohle, 1965; McGill & Gibbon, 1965),
we agree with Heathcote et al. (1991), Schwarz (2001), and Van
Zandt (2002) that the ex-Gaussian model is probably too simple
for such substantive cognitive attributions to be made. In that light,
it is necessary to emphasize that our “mapping” between distribu-
tional characteristics and different classes of cognitive operations

should be construed as metaphorical at this point. It is only
appropriate to ascribe specific processes to specific distributional
parameters when one has a computational model of the targeted
task. The model needs to be explicit and well-specified enough for
the researcher to predict a priori how experimental manipulations
might modulate different RT parameters (Balota & Spieler, 1999).
In general, the present distributional analyses should be viewed as
a descriptive tool that partitions factor effects into distributional
shifting and skewing. These finer-grained effects (especially the
types of tradeoffs observed in the current results) can then be used
to impose finer constraints on extant models and processes.

Conclusions

The results from the present experiments further underscore the
utility of distributional analyses in better understanding the influ-
ence of multiple variables. As Heathcote et al. (1991) have pointed
out, relying on analyses of means alone can potentially lead to
inadequate or misleading conclusions. In this instance, distribu-
tional analyses and analyses of means yielded markedly divergent
outcomes. At the level of the mean, additive effects of stimulus
quality and word frequency were observed in lexical decision,
regardless of nonword type. At the level of the RT distribution,
however, interactive effects in � were produced only when
pseudohomophones, but not legal nonwords, were used, and this
pattern was replicated in three different populations of subjects.
Collectively, these findings indicate that distributional analyses not
only resolve data at a finer level of granularity but may also
provide more faithful insights into underlying processes.
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Appendix

Table A1
High-frequency words

AIR FILM LIFE SORT
ARTIST FINAL LIKE SOUND
BALL FIRE LONG SOUTH
BEHIND FOOD LOSS STAGE
BOTTOM FORCE MACHINE START
CARRY FREE MAJOR STATION
CASE GAS MONEY STORY
CAUSE GIRL MOTOR STUDENT
CHANCE GOAL MUSIC STUDY
CHIEF GUN NAME STYLE
CHILD HAPPEN NOVEL
CHURCH HIGH PAID THERE
CLAIM HOME PARTY THING
CLOSE HOTEL PICTURE TODAY
COLD HOUSE PIECE TOP
COLOR HUMAN PLACE TOTAL
CUT INDEX PLANE VIEW
DESK JOB PRETTY VOICE
DINNER KITCHEN ROAD WAIT
DOCTOR LABOR SEA WELL
DRIVE LAND SHIP WISH
EIGHT LARGE SIDE WOMAN
FATHER LATER SIGHT WORLD
FEEL LESS SIGN YELLOW
FEET LETTER SIX YOU

Table A2
Low-frequency words

ADEPT EMBARK MERRY SOCK
ANVIL EXIT MESH SPICE
APRON FARE MINT SPIN
ARID FLOAT MULE SPOIL
AWE FLU MUNCH SPOON
BANJO FLUTE OUNCE SPY
BEAN GAZE PAIL STACK
BEGGAR GORGE PEACH STINK
BOOM GRAPE PLUMP STOOL
CANON GRAVEL POLAR THORN
CARVE HASTE QUEEN THRILL
CAVERN HICK RIM TORCH
CHEER HOBBY ROAST TRAITOR
CHORE HOWL RUDE TRAMP
COMIC JARGON RULER TROUT
CONCEDE JOLT RUMOR UNCLE
CORAL LASS SCOOP VALVE
COWARD LOFT SCRATCH VEIL
CRATE LORD SCRUB VILE
DENSE LUST SEAM WEAVE
DUAL MAGNET SERVANT WELD
DUMMY MARCH SHRUG WITCH
DUNE MASK SKULL WIZARD
DUSK MAYOR SLAB WRECK
EDIT MENTOR SMASH ZOO

Table A3
Legal-nonwords

AMANG DROMB LARCH SHOIR
BAW DUT LARN SHOV
BEIRN EAP LEMM SINDOL
BELONS FANE LOAP SINDWHA
BIHEAV FARN LODDER SKORT
BIRGAN FEARTY LOICE SKULP
BOAK FERAN LOUST SLOOK
BOIM FIMUS MANT SLOTE
BOITT FLOD MATTUL SOID
BONSE FLOOCE MEARNIN SOIN
BORST FLOOM MINY SOOWOI
BOUD FLORT MOIR SORCH
BOUP FOLT MOTCH SORVE
BOUR FRAKLE MOUDEN SOUT
BROME FRANT MUTH SOUZE
BRULLAN FREAM NACE SPART
BRUTH FRIM NARSE SPRUD
CAMFAR FROLE NAZE STOMPAD
CAMMEN FROTE NEIZE STOOM
CAMPLOO FROUDA NELD STRALE
CANSAR FURSE NOOTY SUKE
CARSE FUTHOR NOUCE SWARL
CATTEN GEAM NOUTE TADE
CEROOR GEMBOL OUZY TARKOY
CHALLO GEWS PANSOL TAZE
CHOIK GIRDAN PEIP THOY
CHOOK GLAE PHANNE THRA
CIRBAN GOACE PHON THRAT
CLORK GREPE PILLOT THRID
COL GRIE POPLE TINCE
CONSAR GRINE PORPLE TOILE
CONSUN GUTE PRESOI TOIM
COOGE HANNY PRIVE TONSHA
COOM HEAKE RAF TOPE
COUM HOARO RATHAM TRAFF
CRADET HOD REAB TRUBE
CRAT HOF REAZE TRULE
CUFFAY HOIZE RESURS UKE
DAFF HOOVE ROIDE UTE
DALT ILLWOY ROIP VALLEN
DEACE JARM ROULY VOCAME
DEAT JILE RUNKLE VULT
DEBBLE JONTLE SAMENT WAIRD
DECE JORK SANTRO WARTH
DESCARS JUNDER SARTEN WEAGE
DITOLE KEF SATCH WOUT
DOULE KIPY SAUK WRONT
DOUM KNOIT SERPRAZ WUTE
DRAS KONDY SHAT YEAK
DREM LADDLE SHOAP YOULD
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Table A4
Pseudohomophones

AIP KOPY AKE LAMM
ALLWAYS LEECE AMUNG LEEP
BAID LEEST BALANSE LERN
BEAP MAYDEN BEED MENT
BEEK MENY BEEM MITH
BERN MOAR BETT MUTCH
BIRST NAWTY BLAIM NEACE
BOR NEAD BOTE NERSE
BOUNSE NOIZE BRAIT NOOZE
BRETH NOZE BRUME OTE
CAIGE PAIJE CAIM PEAP
CARBUN PEEPLE CAREAR PENSIL
CAUST PERPLE CEL PHAN
CHEAK PHIRM CHELLO PHUNNEL
CHOAK PIRCH CLIRK PLEED
CLOO PROSEED COAM PRUVE
COFFEY RADE COMFERT RATHFOO
COMMEN REELY CONSERT RESORSE
CORSE RINKLE COTTEN RITHUM
CRAIT ROAB CROOD ROAP
CUNSENT ROZE DAIT RUF
DEFF SAIN DELT SEAK
DET SED DETALE SEET
DILE SEEZE DOAM SEMENT
DREEM SENTRAL DRES SERTON
DRUMB SEZ DUBBLE SHEAP
EAZY SHEAT FALT SHURE
FAMUS SHUV FETHER SIRCH
FIRN SKALP FLAIM SKERT
FLEACE SLEAK FLUD SLITE
FLURT SOAL FOME SOKE
FONE SPERT FORSE SPRED
FOURTY STAIL FRAIM STROLE
FRALE STUK FREKLE SURVE
FRITE SUTCH FRUM SWERL
FRUNT TAYP GAIM TENCE
GAMBEL TERKEY GARDUN THAY
GLOE THEFE GOOCE THRED
GOTE THRET GRAE TIPE
GRONE TODE GRUPE TOLE
HAF TOOB HED TRALE
HEERO TROFF HEEVE TROLE
HOAP TRUPE HOKES TUME
HOZE TYDE HUNNY VACUME
JALE VALT JENDER VILLEN
JENTLE WAIGE JERM WEIT
JIRK WEERD JOAK WEET
KAF WIRTH KANDY WITE
KEAP WRENT KNET WURK
KOME YEELD KOMPLIT YOAK
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