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The present study sheds light on the interplay between lexical and decision processes in the lexical
decision task by exploring the effects of lexical decision difficulty on semantic priming effects. In 2
experiments, we increased lexical decision difficulty by either using transposed letter wordlike nonword
distracters (e.g., JUGDE; Experiment 1) or by visually degrading targets (Experiment 2). Although target
latencies were considerably slowed by both difficulty manipulations, stimulus quality—but not nonword
type—moderated priming effects, consistent with recent work by Lupker and Pexman (2010). To
characterize these results in a more fine-grained manner, data were also analyzed at the level of response
time (RT) distributions, using a combination of ex-Gaussian, quantile, and diffusion model analyses. The
results indicate that for clear targets, priming was reflected by distributional shifting of comparable
magnitude across different nonword types. In contrast, priming of degraded targets was reflected by
shifting and an increase in the tail of the distribution. We discuss how these findings, along with others,
can be accommodated by an embellished multistage activation model that incorporates retrospective
prime retrieval and decision-based mechanisms.
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Visual word recognition has been the focus of considerable
research, with the lexical decision task being the most commonly
used task to study visual word recognition (Murray & Forster,
2004), featured in thousands of studies (Gomez, in press). Impor-
tantly, lexical decision performance has been central to influential
models that focus on lexical processing as well as models that
focus on decision mechanisms. The former include the multistage
activation model (Borowsky & Besner, 1993) and the multiple
read-out model (MROM; Jacobs & Grainger, 1994), whereas
the latter include the two-stage model (Balota & Spieler, 1999), the
random walk model (Stone & Van Orden, 1993), the diffusion
model (Ratcliff, Gomez, & McKoon, 2004), and the leaky com-
peting accumulator model (Dufau, Grainger, & Ziegler, 2012). In
addition, more recent models such as the Bayesian reader model

(Norris, 2006, 2009) have attempted to unify word recognition and
decision-making processes within an integrated framework that
likens readers to optimal Bayesian decision makers.

In the present study, we investigate the roles of lexical and
decision processes in the lexical decision task by examining the
joint effects of semantic priming with two variables known to
strongly modulate lexical decision performance: stimulus quality
and nonword type. The semantic priming effect is the well-known
finding that words preceded by related primes (e.g., NURSE–
DOCTOR) are recognized faster than those preceded by unrelated
primes (e.g., BUTTER–DOCTOR; Meyer, Schvaneveldt, &
Ruddy, 1975). Stimulus quality refers to whether items are pre-
sented clearly or in a degraded manner; clear words are responded
to faster and more accurately than degraded words (Becker &
Killion, 1977). Nonword type refers to the similarity of the non-
word distracters to the word targets, and the general finding is that
lexical decision responses to words are slower and less accurate
when more wordlike distracters are used (Stone & Van Orden,
1993).

Semantic Priming, Stimulus Quality, and
Nonword Type

Several studies (Balota, Yap, Cortese, & Watson, 2008;
Borowsky & Besner, 1993; Brown & Besner, 2002; Meyer et al.,
1975; Thomas, Neely, & O’Connor, 2012) have observed larger
semantic priming effects for degraded targets than for clear targets.
According to Sternberg’s (1969; Roberts & Sternberg, 1993) ad-
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ditive factors logic, two factors that produce a statistical interaction
exert their influence on at least one common processing stage. In
contrast, if two factors yield additive effects (i.e., two main effects
without an interaction), they influence different stages (although
see McClelland, 1979, for an alternative explanation of additive
effects). The overadditive Stimulus Quality � Priming interaction
is thus consistent with the idea that semantic priming and stimulus
quality influence at least one common processing stage. Interest-
ingly, although semantic priming interacts with stimulus quality,
word-frequency and stimulus quality produce clear additive effects
in lexical decision, suggesting that these two factors influence
separate stages (Yap & Balota, 2007). Given that word-frequency
also interacts with semantic priming (see Becker, 1979), this
collective set of findings has represented an important conundrum
for any comprehensive model of lexical decision performance to
accommodate.

The interaction between stimulus quality and priming suggests
that other experimental manipulations (e.g., stimulus degradation)
that make it more difficult to discriminate between words and
nonwords should also magnify priming effects. As described ear-
lier, another way to vary lexical decision difficulty is to manipulate
the similarity of nonword distracters to real words. Nonwords can
be orthographically illegal (e.g., BRNAE), orthographically legal
(e.g., BRONE), or homophonous with real words (i.e., pseudo-
homophones; e.g., BRANE). As nonwords become increasingly
wordlike, lexical decision latencies become slower. More impor-
tantly, nonword type strongly interacts with other variables that
influence lexical decision performance. For example, word-
frequency effects are much larger in the presence of pseudohomo-
phones, compared to legal or illegal nonwords (Stone & Van
Orden, 1993; Yap, Balota, Cortese, & Watson, 2006).

Interestingly, Lupker and Pexman (2010) have recently demon-
strated that increasing lexical decision difficulty by using wordlike
nonwords (e.g., BRANE), compared to less wordlike nonwords
(e.g., BRONE), did not alter the size of the semantic priming effect
(see also Yap, Tse, & Balota, 2009). The additive effects of
priming and nonword type are puzzling, in light of the Stimulus
Quality � Priming, Nonword Type � Word-Frequency, and the
Word-Frequency � Priming interactions. Specifically, if using
more wordlike distracters increases lexical decision difficulty, and
increased lexical decision difficulty is reflected in greater priming
(as reflected by the Stimulus Quality � Semantic Priming inter-
action), then it is surprising that priming effects are not moderated
by nonword type. Indeed, Lupker and Pexman have pointed out
that the additive effects of nonword type and priming constitute
another major challenge to any model that attempts to explain
nonword type and semantic priming effects in lexical decision
using a common lexical mechanism.

To our knowledge, the counterintuitive dissociation between the
Priming � Stimulus Quality interaction and the additive effects of
priming and nonword type has not been systematically investi-
gated within a single study. More importantly, no extant model can
handle these findings. For example, although the multistage inter-
active activation model (Borowsky & Besner, 1993) is able to
accommodate the complex joint effects of stimulus quality, prim-
ing, and word-frequency, it is silent on nonword type effects. In
contrast, lexical decision models that can accommodate the joint
effects of nonword type with other variables—such as Balota and
Chumbley’s (1984) two-stage model, Grainger and Jacobs’s

(1996) MROM, Ratcliff et al.’s (2004) diffusion model, and Nor-
ris’s (2006, 2009) Bayesian reader model—have not yet explicitly
addressed the joint effects of nonword type with either stimulus
quality or priming.

Objectives of the Present Study

In the present study, we reexamined the joint effects of priming
with stimulus quality and nonword type. Although different groups
have already reported that priming and stimulus quality interact
(e.g., Balota et al., 2008) and that priming and nonword type are
additive (Lupker & Pexman, 2010), comparing studies that employ
different sets of stimuli or participants with different levels of
vocabulary knowledge (i.e., knowledge of word forms and mean-
ings) could be potentially misleading. For example, although the
overadditive interaction between priming and word-frequency (i.e.,
stronger priming for low-frequency words) is considered a benchmark
finding in the word recognition literature (see McNamara, 2005;
Neely, 1991), Yap et al. (2009) recently demonstrated that the
interaction between priming and word-frequency was observed
only for participants with less vocabulary knowledge, whereas
participants with more vocabulary knowledge produced additive
effects. To ensure that any observed effects in the present study are
not driven by differences in stimuli difficulty or participants’
vocabulary knowledge, the same prime-target pairs were used
across experiments, and participants in the different experiments
were matched on vocabulary knowledge (as reflected by perfor-
mance on a standardized vocabulary measure).

More importantly, the present study also afforded the opportu-
nity to explore the effects of the targeted variables on both mean
response times (RTs) and the underlying characteristics of RT
distributions. Although chronometric studies of cognitive process-
ing overwhelmingly examine RTs at the level of the mean, there is
mounting evidence that experimental variables can selectively
modulate different characteristics of empirical RT distributions
(see Balota & Yap, 2011, for a review). A popular way to carry out
distributional analyses is to fit empirical RT data to a theoretical
distribution like the ex-Gaussian function, which is the convolu-
tion of a Gaussian (normal) and exponential distribution (Ratcliff,
1979). The ex-Gaussian distribution contains three parameters; �
and �, respectively, reflect the mean and standard deviation of the
Gaussian distribution, whereas � reflects the mean and standard
deviation of the exponential distribution. Changes in � indicate
distributional shifting, whereas changes in � reflect modulations in
the tail of the distribution. Ex-Gaussian analysis is usually supple-
mented by a nonparametric technique called Vincentizing (Rat-
cliff, 1979), through which one can examine the effect of a
variable on different regions of the RT distribution. To carry out
Vincentizing, one first rank orders each participant’s RTs sepa-
rately for each condition, followed by computing effects at differ-
ent quantiles (e.g., .1, .2, .3, .4, etc.). These tools collectively allow
researchers to ascertain whether effects are mediated by distribu-
tional shifting, an increase in the slow tail of the distribution, or
some combination of both.

Importantly, RT distributional analyses have yielded new in-
sights into the nature of semantic priming. For example, Balota et
al. (2008) demonstrated that when targets are presented clearly, the
semantic priming effect for highly skilled lexical processors is
reflected by a shift in the RT distribution (see Figure 1). However,
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when the same targets are visually degraded, priming simultane-
ously shifts and increases the tail of the distribution, and this is
reflected in more priming for the slower, more difficult trials (see
Figure 1). Balota et al. have argued that these results are consistent
with the idea that for highly fluent lexical processors, semantic
priming for clearly presented words is mediated by a relatively
modular head-start mechanism, where primes simply speed up
recognition of the related target by some constant amount of time,
regardless of target difficulty (for a similar effect on eye fixation
durations, see Staub, 2011). In contrast, when targets are degraded,
the system adaptively recruits any information available to help
resolve the target (Whittlesea & Jacoby, 1990) and is therefore
more reliant on prime information for the more difficult items,
which is reflected in the slower quantiles of the RT distribution. To
our knowledge, how nonword type moderates priming at the level
of RT distributions has not been investigated. The study by Lupker
and Pexman (2010), which has addressed this question most di-
rectly among extant studies (e.g., Joordens & Becker, 1997; Mi-
lota, Widau, McMickell, Juola, & Simpson, 1997; Stone & Van
Orden, 1992), was based on mean RT analyses.

Although ex-Gaussian parameters help provide a finer-grained
summary of empirical RT distributions, it is inappropriate, without
a theoretical framework, to directly map them onto cognitive
processes (Matzke & Wagenmakers, 2009). To better understand
the underlying mechanisms, researchers (e.g., Balota & Spieler,
1999; Schmiedek, Oberauer, Wilhelm, Sü�, & Wittmann, 2007)
have recommended fitting RT data to process-oriented models
such as the diffusion model of binary decision (Ratcliff, 1978;
Ratcliff et al., 2004). According to the diffusion model, lexical
decision involves the accumulation of noisy information over time
from a starting point toward one of two decision boundaries (word
or nonword). Three major parameters describe this process. Drift
rate (v) refers to the mean rate at which information is accumu-
lated from the word or nonword stimulus, boundary separation (a)
refers to the location of the response criterion, and Ter refers to the
nondecision component that collectively indexes encoding and
response execution processes. Importantly, this model allows one
to distinguish between the quality of evidence driving the decision,

the decision criteria, and nondecision processes (Ratcliff, Thapar,
& McKoon, 2010). In order to capitalize on the additional insights
afforded by diffusion model parameter estimates, distributional
effects in the present study are explored using a combination of
ex-Gaussian analysis, Vincentizing, and diffusion model analysis.

To recapitulate, the present study uses the same participant pool
and stimulus set to directly compare two manipulations of lexical
decision difficulty (i.e., nonword type vs. stimulus quality) on
semantic priming, and by analyzing these effects both at the level
of the mean and at the level of underlying RT distributional
characteristics. Specifically, in Experiment 1, we compare priming
effects when legal versus transposed-letter (TL) nonwords (e.g.,
TRIAN) are used. It is important to replicate the intriguing additive
pattern observed by Lupker and Pexman (2010), given some of the
mixed findings previously reported in this literature (e.g., Milota et
al., 1997; Shulman & Davison, 1977). TL nonwords are created by
transposing two letters in a word (e.g., TRAIN–TRIAN) and are
perceptually very similar to real words (Forster, Davis,
Schoknecht, & Carter, 1987; Perea & Lupker, 2003). Crucially, TL
nonwords slow participants down even more effectively than pseu-
dohomophones (Lupker & Pexman, 2010; see also Perea & Lup-
ker, 2004).

In Experiment 2, we compare priming effects when clear versus
degraded targets are presented. Stimuli are degraded by rapidly
alternating the target letter string (e.g., DOG) with a randomly
generated mask of the same length (e.g., &?#). This paradigm
yields robust degradation effects (e.g., Balota et al., 2008; Yap &
Balota, 2007; Yap, Balota, Tse, & Besner, 2008) that are qualita-
tively similar to those produced by other degradation manipula-
tions (e.g., contrast reduction; O’Malley, Reynolds, & Besner,
2007). A within-participant manipulation of stimulus quality is
used, consistent with other studies manipulating this variable (Ba-
lota et al., 2008; Becker & Killion, 1977; Besner & Smith, 1992;
Borowsky & Besner, 1993; Brown, Stolz, & Besner, 2006;
O’Malley et al., 2007; Plourde & Besner, 1997).

Experiment 1

Method

Participants. Eighty participants (58 females) from the Na-
tional University of Singapore participated for course credit. All
participants were proficient in English and had normal or
corrected-to-normal vision. The mean vocabulary age, as mea-
sured by the vocabulary subscale of the Shipley Institute of Living
Scale (Shipley, 1940), was 18.08 (SD � 0.82).

Design. Priming (related or unrelated) was manipulated
within-participants, and Nonword Type (legal nonwords or TL
nonwords) was manipulated between-participants; half the partic-
ipants were presented with legal nonwords, whereas the other half
were presented with TL nonwords.

Stimuli. One hundred twenty words (see the Appendix for
a full list of stimuli) served as targets (see Table 1 for descrip-
tive statistics). Each target word was preceded by either a
related or unrelated prime, yielding 60 observations per partic-
ipant cell. Across participants, stimuli were counterbalanced
across the related and unrelated conditions; unrelated prime-
word target pairs were created by re-pairing the primes and
targets within each set. No prime or target was repeated within

Figure 1. Interactive effects of Stimulus Quality and Relatedness across
quantiles, showing that the larger effects of priming for degraded, com-
pared to clear, targets are due to both a shift and a stretching in the tail of
the distribution.
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a participant. Legal nonwords and the base words from which
TL nonwords were derived were matched to target words on
number of syllables, letters, and orthographic neighbors (see
Table 1). One hundred and twenty legal nonwords were ob-
tained from the English Lexicon Project (Balota et al., 2007),
whereas 120 TL nonwords were obtained by rearranging two
adjacent letters in words. Four TL nonwords were obtained by
transposing the first and second letters, 23 by transposing the
second and third letters, 47 by transposing the third and fourth
letters, 31 by transposing the fourth and fifth letters, 10 by
transposing the fifth and sixth letters, 4 by transposing the sixth

and seventh letters, and 1 by transposing the seventh and eighth
letters.

Procedure. PC-compatible computers running E-prime
software (Schneider, Eschman, & Zuccolotto, 2001) were used
for stimulus presentation and data collection. All stimuli were
displayed in the center of the computer screen, and participants’
responses were made on a computer keyboard. Participants
were tested individually in sound-attenuated cubicles, sitting
about 60 cm from the screen. They first provided demographic
information (gender, race, age, and years of university educa-
tion) and completed the vocabulary subscale (40 item vocabu-
lary test) of the Shipley Institute of Living Scale (Shipley,
1940; Zachary, 1992) on the computer. Participants were in-
structed that a word and a letter string would be presented
sequentially and they were to decide whether the letter string
formed a word or nonword by making the appropriate button
press, that is, the apostrophe key for words and the A key for
nonwords. Participants were encouraged to respond quickly but
not at the expense of accuracy. There were 20 practice trials,
followed by four experimental blocks of 60 trials each, with
breaks between blocks. The order in which stimuli were pre-
sented was randomized anew for each participant. Stimuli were
presented in uppercase 14-point Courier New, and each trial
comprised the following order of events: (a) a fixation point (�)
at the center of the monitor for 2,000 ms, (b) the prime for 150
ms, (c) a blank screen for 650 ms, and (d) the target, resulting
in an 800-ms prime-target stimulus onset asynchrony. The
target remained on the screen for 3,000 ms or until a response
was made. Each correct response was followed by an intertrial
interval of 450 ms. If a response was incorrect, a 170-ms tone
was presented simultaneously with the word “Incorrect” dis-
played slightly below the fixation point for 450 ms.

Results and Discussion

Errors (5.7% across all conditions) were first excluded from the
analyses. In addition, responses below 200 ms and above 3,000 ms
were eliminated before a standard deviation was calculated for
each participant. Response latencies beyond 2.5 SDs from each
participant’s mean were also excluded, and this removed a further
2.8% of the responses. The mean RTs, accuracy rates, and ex-
Gaussian parameters are presented in Table 2.

Table 1
Descriptive Statistics for the Word and Nonword Stimuli Used
in Experiments 1 and 2

Word stimuli (N � 120) M SD

Number of morphemes 1.34 0.51
Number of syllables 1.79 0.73
Number of letters 6.14 1.67
Number of phonemes 5.10 1.70
Log HAL frequency (Lund &

Burgess, 1996) 8.07 1.13
Number of orthographic neighbors 2.64 3.91
Number of phonological neighbors 5.75 8.15
Orthographic Levenshtein distance

(Yarkoni et al., 2008) 2.17 0.71
Phonological Levenshtein distance

(Yap & Balota, 2009) 2.03 0.83
Forward associative strength

(Nelson et al., 2004) 0.21 0.18
Backward associative strength

(Nelson et al., 2004) 0.16 0.21

Nonword stimuli (N � 120)
Legal

nonwords TL nonwords

Log HAL baseword frequency
(Lund & Burgess, 1996) 8.10 1.37

Number of syllables 1.76 0.73 1.76 0.69
Number of letters 6.16 1.65 6.14 1.67
Number of orthographic

neighbors 2.67 3.95 2.73 3.8

Note. HAL � Hyperspace Analogue to Language; TL � transposed-
letter.

Table 2
Mean RTs, Accuracy, Ex-Gaussian, and Diffusion Model Parameters as a Function of Nonword Type and Relatedness in
Experiment 1

Nonword type/priming M Accuracy � � � v a Ter

Legal nonwords
Related 606 0.98 479 52 128 3.32 1.49 0.39
Unrelated 625 0.96 499 46 127 3.30 1.47 0.41
Priming effect 19 0.02 20 �6 �1 0.02 �0.02 0.02

TL nonwords
Related 764 0.96 531 62 235 2.58 1.88 0.40
Unrelated 782 0.96 545 53 238 2.52 1.86 0.43
Priming effect 18 0 14 �9 3 0.06 �0.02 0.03

Interaction �1 �0.02 �6 �3 4 0.04 0 0.01

Note. RT � response time; TL � transposed-letter.
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Response latencies. For RTs, the main effects of nonword
type, Fp(1, 78) � 25.62, p 	 .001, MSE � 38,866, 
p

2 � .25; Fi(1,
119) � 368.96, p 	 .001, MSE � 8,318, 
p

2 � .76, and priming,
Fp(1, 78) � 12.75, p � .001, MSE � 1,038, 
p

2 � .14; Fi(1, 119) �
12.39, p � .001, MSE � 3,784, 
p

2 � .09, were significant. The
Nonword Type � Priming interaction did not approach signifi-
cance by participants or by items, Fs 	 1.

Accuracy rates. For accuracy rates, the main effect of non-
word type was significant by items and approached significance by
participants, Fp(1, 78) � 2.81, p � .098, MSE � 0.002, 
p

2 � .035;
Fi(1, 119) � 5.52, p � .020, MSE � 0.002, 
p

2 � .044. The main
effect of priming, Fp(1, 78) � 5.67, p � .020, MSE � 0.001, 
p

2 �
.068; Fi(1, 119) � 5.19, p � .025, MSE � 0.002, 
p

2 � .042, and
the Nonword Type � Priming interaction, Fp(1, 78) � 6.30, p �
.014, MSE � 0.001, 
p

2 � .075; Fi(1, 119) � 4.69, p � .032,
MSE � 0.002, 
p

2 � .038, were also significant. As shown in Table
2, the priming effect was larger in the context of legal nonwords
compared to TL nonwords.

Ex-Gaussian analyses. Using the quantile maximum likeli-
hood estimation (QMLE) procedure in the QMPE v2.18 program
(Cousineau, Brown, & Heathcote, 2004; Heathcote, Brown, &
Mewhort, 2002), ex-Gaussian parameters (�, �, �) were obtained
for each participant across the different experimental conditions.
QMLE provides unbiased parameter estimates and has been dem-
onstrated to be more effective than continuous maximum likeli-
hood estimation for small samples (Heathcote & Brown, 2004;
Speckman & Rouder, 2004). All fits successfully converged within
250 iterations.

For �, the main effects of nonword type, F(1, 78) � 8.37, p �
.005, MSE � 11,563, 
p

2 � .10, and priming, F(1, 78) � 22.02,
p 	 .001, MSE � 539, 
p

2 � .22, were significant. The Nonword
Type � Priming interaction was not significant, F 	 1. Turning to
�, only the main effect of priming was significant, F(1, 78) � 5.68,
p � .020, MSE � 424, 
p

2 � .07. Finally, for �, only the main
effect of nonword type was significant, F(1, 78) � 33.67, p 	
.001, MSE � 13,962, 
p

2 � .30.
Quantile analyses (Vincentizing). The mean quantiles for

the different experimental conditions are plotted in Figure 2,
whereas Figure 3 presents priming effects as a function of non-
word type. In Figure 2, the empirical quantiles are represented by
data points and standard error bars, and the estimated quantiles for
the best-fitting ex-Gaussian distribution are represented by lines.

The theoretical quantiles were estimated for each condition by
using Monte Carlo simulations to generate ex-Gaussian distribu-
tions (comprising 20,000 observations for each condition) corre-
sponding to the ex-Gaussian parameters for that condition (see
White & Staub, 2011). The goodness of fit between the empirical
and theoretical quantiles reflects the extent to which the empirical
RT distributions are being captured by the ex-Gaussian parame-
ters. From Figure 3, it is clear that priming effects in the legal and
TL nonword conditions are approximately the same size and
remain relatively invariant across the quantiles.

Diffusion model analyses. To obtain diffusion model param-
eter estimates, we used the e Fast-dm program (Voss & Voss,
2007), which uses the partial differential equation (PDE) method
(Voss & Voss, 2008) to estimate diffusion model parameters
efficiently and accurately. Across experimental conditions,
Fast-dm was used to estimate drift rate (v), boundary separation
(a), and the nondecision component (Ter) for each participant. For

v, larger numbers reflect steeper drift rates; for a, larger numbers
reflect more conservative response criteria; and for Ter, larger
numbers reflect longer nondecision times.

For v, only the main effect of nonword type was significant, F(1,
78) � 30.81, p 	 .001, MSE � 0.751, 
p

2 � .28; none of the other
effects were reliable, Fs 	 1. For a, only the main effect of
nonword type was significant, F(1, 78) � 29.69, p 	 .001, MSE �
0.200, 
p

2 � .28; none of the other effects were reliable, Fs 	 1.
For Ter, only the main effect of priming was significant, F(1, 78) �
11.43, p � .001, MSE � 0.003, 
p

2 � .13; none of the other effects
were reliable, ps � .25.

Summary. Although the presence of TL nonword distracters
substantially slowed responses to word targets, priming effects
were not moderated by nonword type, replicating Lupker and
Pexman (2010). Furthermore, distributional analyses revealed that
priming—for both nonword types—was reflected only by distri-
butional shifting (�), whereas nonword type effects—for related
and unrelated targets—were reflected by shifting (�) and an in-
crease in the tail (�) of the distribution. Finally, the diffusion model
analyses indicated that the distributional shift associated with
priming was mediated entirely by nondecision time (Ter; i.e., the
time taken for encoding and response execution), not by drift rate
(v) or boundary separation (a). In contrast, the effect of nonword
type was reflected in lower drift rates and more conservative
response criteria when TL nonwords were used as distracters.

Figure 2. Lexical decision performance from Experiment 1 as a function
of Relatedness and Quantiles in the legal nonword condition (top panel)
and transposed-letter (TL) nonword condition (bottom panel). Empirical
quantiles are represented by error bars, whereas fitted ex-Gaussian quan-
tiles are represented by lines. RT � response time.
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Experiment 2

Method

Participants. Forty-eight participants (30 females) from the
National University of Singapore participated for course credit. All
participants were proficient in English and had normal or
corrected-to-normal vision. The mean vocabulary age, as mea-
sured by Shipley’s (1940) Vocabulary subscale, was 17.90 (SD �
1.11).

Design. Priming (related or unrelated) and Stimulus Quality
(clear or degraded) were manipulated within-participants. The
dependent variables were RT and accuracy.

Stimuli. The 120 prime-target pairs and legal nonwords from
Experiment 1 were used.

Procedure. The procedure of Experiment 2 was similar to
that used in Experiment 1, except that for half the trials (i.e., the
degraded condition), letter strings were rapidly alternated with a
randomly generated mask of the same length. For example, the
mask @$#&% was presented for 14 ms, followed by a five-letter
target word for 28 ms, and the two repeatedly alternated until the
participant responded. The masks were generated from random
permutations of the following symbols: &@?!$*%#?�. Across
participants, targets were counterbalanced across related and un-
related conditions and degraded and clear conditions.

Results and Discussion

Errors (6.3% across all conditions) and response latencies
shorter than 200 ms or longer than 3,000 ms were excluded from
the analyses. Response latencies beyond 2.5 SDs from each par-
ticipant’s mean were also excluded, removing an additional 3.4%
of the responses. The mean RTs, accuracy rates, and ex-Gaussian
parameters are presented in Table 3.

Response latencies. For RTs, the main effects of stimulus
quality, Fp(1, 47) � 96.55, p 	 .001, MSE � 9,791, 
p

2 � .67;
Fi(1, 119) � 486.21, p 	 .001, MSE � 5,123, 
p

2 � .80, and
priming, Fp(1, 47) � 35.37, p 	 .001, MSE � 2,582, 
p

2 � .43;
Fi(1, 119) � 25.23, p 	 .001, MSE � 9,222, 
p

2 � .18, were
significant. The Stimulus Quality � Priming interaction was also
significant, Fp(1, 47) � 8.92, p � .004, MSE � 2,467, 
p

2 � .16;
Fi(1, 119) � 12.05, p � .001, MSE � 6,420, 
p

2 � .09. Priming
effects were larger for degraded (65 ms) than for clear (22 ms)
targets.

Accuracy rates. For accuracy rates, the main effects of
stimulus quality, Fp(1, 47) � 29.70, p 	 .001, MSE � 0.002, 
p

2 �
.39; Fi(1, 119) � 11.55, p � .001, MSE � 0.015, 
p

2 � .088, and
priming, Fp(1, 47) � 12.81, p � .001, MSE � 0.002, 
p

2 � .21;
Fi(1, 119) � 11.76, p � .001, MSE � 0.006, 
p

2 � .090, were
significant. The Stimulus Quality � Priming interaction ap-
proached significance by participants and by items, Fp(1, 47) �
2.99, p � .090, MSE � 0.002, 
p

2 � .06; Fi(1, 119) � 3.38, p �
.069, MSE � 0.005, 
p

2 � .028. Priming effects were larger for
degraded (3.6%) than for clear (1.3%) targets.

Ex-Gaussian analyses. For �, the main effects of stimulus
quality, Fp(1, 47) � 83.81, p 	 .001, MSE � 3,021, 
p

2 � .64, and
priming, Fp(1, 47) � 13.05, p � .001, MSE � 2,599, 
p

2 � .22,
were significant. The Stimulus Quality � Priming interaction was
not significant, F 	 1. Turning to �, none of the effects were
reliable, Fs 	 1. Finally, for �, the main effect of stimulus quality
was significant, F(1, 47) � 20.16, p 	 .001, MSE � 11,001, 
p

2 �
.30, but the main effect of priming did not reach significance (p �
.096). This was qualified by a borderline reliable Stimulus Qual-
ity � Priming interaction, F(1, 47) � 3.60, p � .064, MSE �
3,162, 
p

2 � .07, where priming effects were larger for degraded
(30 ms) than for clear (�1 ms) targets.

Quantile analyses. The mean quantiles for the different ex-
perimental conditions are plotted in Figure 4, whereas Figure 5
presents priming effects as a function of stimulus quality. From

Figure 3. Priming effect across quantiles as a function of nonword type.
Error bars reflect the standard errors of the difference scores. TL �
transposed-letter.

Table 3
Mean RTs, Accuracy, Ex-Gaussian, and Diffusion Model Parameters as a Function of Stimulus Quality and Relatedness in
Experiment 2

Stimulus quality/priming M Accuracy � � � v a Ter

Clear
Related 650 0.97 508 55 145 2.78 1.34 0.43
Unrelated 672 0.96 531 61 144 2.88 1.34 0.45
Priming effect 22 0.01 23 6 �1 �0.10 0 0.02

Degraded
Related 769 0.94 577 63 198 2.50 1.47 0.51
Unrelated 834 0.91 608 61 228 2.23 1.54 0.53
Priming effect 65 0.03 31 �2 30 0.27 0.07 0.02

Interaction 43 0.02 8 �8 31 0.37 0.07 0

Note. RT � response time.
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Figure 4, it is clear that priming effects for clear targets remained
relatively constant across the quantiles, but priming effects for
degraded targets increased across the RT distribution.

Diffusion model analyses. For v, the main effect of stimulus
quality, F(1, 47) � 53.05, p 	 .001, MSE � 0.200, 
p

2 � .53, was
significant. The Stimulus Quality � Priming interaction was also
significant, F(1, 47) � 8.02, p � .007, MSE � 0.200, 
p

2 � .15;
priming effects were reliable for degraded (p � .002) but not for
clear (p � .379) targets. Moreover, degradation effects were
reliable for both related and unrelated targets (ps 	 .01), with
stronger degradation effects observed for unprimed words. Turn-
ing to a, only the main effect of stimulus quality was significant,
F(1, 47) � 19.09, p 	 .001, MSE � 0.069, 
p

2 � .29; none of the
other effects were reliable, ps � .19. For Ter, the main effects of
stimulus quality, F(1, 47) � 109.07, p 	 .001, MSE � 0.002, 
p

2 �
.70, and priming, F(1, 47) � 5.95, p � .019, MSE � 0.004, 
p

2 �
.11, were significant; the Stimulus Quality � Priming interaction
was not reliable, F 	 1.

Summary. Priming effects were larger for degraded, com-
pared to clear, words, and this interaction was predominantly
mediated by �, the tail of the distribution, consistent with the extant
literature (see, e.g., Balota et al., 2008). Specifically, priming
reflected a shift (�) for clear targets, but shifting (�) and an
increase in the tail (�) for degraded targets. The diffusion model
analyses revealed that for clear targets, priming was primarily

reflected by nondecision time (Ter), consistent with Experiment 1.
However, when targets were degraded, priming was mediated by
nondecision time and drift rate (v); compared to related targets,
unrelated targets were associated with reliably lower drift rates.

General Discussion

In the present study, we explored how the well-studied semantic
priming effect was moderated by two variables known to robustly
increase lexical decision difficulty: nonword type (TL nonwords
vs. legal nonwords) and stimulus quality (clear vs. degraded). In
order to increase the clarity of our comparisons, we used a com-
mon set of prime-target pairs, and participants across different
experiments were sampled from the same participant pool and
were comparable on vocabulary knowledge. It is first worth noting
that both manipulations strongly increased discrimination diffi-
culty. Specifically, in Experiment 1, TL nonword distracters (e.g.,
JUGDE), compared to legal nonwords, slowed RTs to words by
158 ms. In Experiment 2, visually degrading words slowed RTs by
115 ms. Importantly, there was a dissociation between the effects
of nonword type and stimulus quality on semantic priming. While
nonword type and priming produced additive effects (replicating
Lupker & Pexman, 2010), stimulus quality and priming interacted,
yielding greater priming for degraded words. More intriguingly,
distributional analyses revealed that semantic priming was re-
flected by shifting of comparable magnitude for legal and TL
nonwords (see Figure 3). In contrast, although priming for clear
targets was reflected by a shift, priming for degraded targets
reflected both shifting and an increase in the tail of the distribution
(see Figure 5). Supplementary diffusion model analyses also indi-
cated that the distributional shift associated with the priming of
clear targets is most consistent with changes in nondecision time,
whereas the priming of degraded targets implicates changes in
nondecision time and, importantly, drift rate.

Although the main effects of nonword type and stimulus quality
were of secondary interest in the present study, the distributional
analyses also yielded insights into how these factors influence
word recognition performance. Specifically, the slowing observed
in the context of difficult TL nonwords was mediated more
strongly by � (i.e., the tail of the distribution) than by �, consistent
with Yap et al. (2006). The presence of TL nonwords was also
associated with lower drift rates and more conservative response

Figure 4. Lexical decision performance from Experiment 2 as a function
of Relatedness and Quantiles in the clear condition (top panel) and de-
graded condition (bottom panel). Empirical quantiles are represented by
error bars, whereas fitted ex-Gaussian quantiles are represented by lines.
RT � response time.

Figure 5. Priming effect across quantiles as a function of stimulus qual-
ity. Error bars reflect the standard errors of the difference scores.
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criteria but had no influence on nondecision time. Turning to
stimulus quality effects, the slowing afforded by degrading the
stimulus was reflected to a similar extent in � and � (replicating
Yap & Balota, 2007). In addition, degrading words resulted in
lower drift rates, longer nondecision times, and more conservative
response criteria.

We are not aware of any theoretical framework or model that
has attempted to provide a unified explanation for the dissociations
reported in the present study, along with other well-established
findings in the lexical decision literature. In the remainder of this
article, we discuss in greater depth how these results might be
accommodated.

Joint Effects of Stimulus Quality, Priming, and
Nonword Type: Going Beyond the Mean

In the present study, we examined the targeted effects both at the
level of the mean and at the level of underlying RT distributional
characteristics. In order to better characterize distributional effects,
data were examined using a combination of ex-Gaussian, quantile,
and diffusion model techniques. The results from Experiment 1
indicated that semantic priming was reflected by distributional
shifting of comparable magnitude for clearly presented targets,
whether legal or TL nonwords were used (see Figure 3). In terms
of diffusion model parameters, this semantic priming shift was
mediated by nondecision time but not by drift rate or response
boundary. However, turning to Experiment 2, a different pattern
was found. Specifically, when targets were degraded, priming was
reflected by both shifting and an increase in the tail of the distri-
bution (see Figure 5), consistent with an increase in nondecision
time and drift rate.

The results from the diffusion model, which captures the distri-
butional changes, are informative in a number of ways. First, the
distributional shift associated with priming clear targets largely
reflects an effect on the duration of the nondecision component,
which taps processes involved in stimulus encoding and response
execution. Second, drift rate mediates the priming effect only when
targets are degraded. Both of these patterns would appear to place
further constraints on Ratcliff and McKoon’s (1988) compound-
cue model of priming, which emphasizes changes in drift rate
across related and unrelated primes. Finally, whereas increasing
difficulty via nonword type reliably decreased word drift rate and
made participants more conservative, priming was equivalent
across different types of nonwords, both at the level of the mean
and at the level of distributional characteristics.

Balota et al. (2008) have argued that priming that is reflected by
a shift (observed in highly skilled readers) is most consistent with a
relatively modular headstart mechanism, wherein primes produce
a constant amount of preactivation for the logogens (Morton,
1969) of related targets. This notion of a headstart meshes well
with the finding that priming influences the nondecision (i.e.,
encoding and response execution) component rather than the re-
sponse boundaries of a diffusion process (cf. Borowsky & Besner,
1993). It is worth noting that adjusting response boundaries can
also produce distributional shifting in a simple random walk model
(Spieler, Balota, & Faust, 2000; Yap et al., 2006), so it is intriguing
that the diffusion model analyses attribute shifting to nondecision
time. Distributional shifting cannot be easily reconciled with
feature-overlap models of priming (Masson, 1995; Plaut & Booth,

2000), which predict changes in the scale of the RT distribution
(i.e., slower trials should be associated with more priming). As
noted, the compound-cue model also assumes that priming effects
are generally mediated by changes in drift rate, which is of course
inconsistent with the present observation that priming as reflected
by drift rate variations is observed only for degraded targets.

When targets are visually degraded, priming is reflected by both
shifting and an increase in the tail of the distribution. Consistent with
this, supplementary diffusion model analyses revealed that priming
for degraded targets involved changes in nondecision time and drift
rate. To explain this, Balota et al. (2008) have proposed that degraded
targets are difficult to resolve, and the lexical system therefore adap-
tively retrieves more prime information when processing such targets
(for an adaptive rational analysis of semantic priming, also see An-
derson & Milson, 1989; Bodner, Masson, & Richard, 2006). More-
over, the distributional plots (see Figure 5) indicate that reliance on
prime information is proportional to the difficulty of the trial. There-
fore, the more difficult items—that is, those at the slow end of the RT
distribution—are associated with more priming. This suggests that
when a target is degraded, priming reflects both a headstart and an
additional prime retrieval mechanism that is engaged after the target
is presented and which is flexibly modulated by the fluency of target
processing (see Balota & Yap, 2006, for a discussion of flexible
lexical processing).

The distinction between priming as a headstart and priming as a
flexible prime retrieval process aligns nicely with the distinction
between prospective versus retrospective priming mechanisms
(Thomas et al., 2012). Prospective priming refers to the facilitation
afforded by a prime before a target is presented (e.g., Balota et al.,
2008), whereas retrospective priming (e.g., Balota et al., 2008; Bodner
& Masson, 1997; Neely, Keefe, & Ross, 1989; Ratcliff & McKoon,
1988) implicates processes that operate after the target is presented. In
this light, distributional shifting might be viewed as a marker for
prospective priming mechanisms, whereas an increase in the distri-
bution’s tail may reflect a more strategic retrospective mechanism.
Interestingly, Thomas et al. (2012) recently explored the effect of
prime-target associative direction on the Stimulus Quality � Priming
interaction. Prospective priming mechanisms necessarily depend on
the presence of a forward prime-to-target association (e.g., KEG–
BEER) and cannot account for backward priming (i.e., target-to-
prime association; e.g., SMALL–SHRINK). Thomas et al. reported
that the overadditive interaction between stimulus quality and priming
was seen for trials with symmetric (e.g., EAST–WEST) or backward
(target-to-prime) associations but was not seen for trials with only
forward (prime-to-target) associations. This suggests that the Stimulus
Quality � Priming interaction is entirely mediated by a retrospective
prime retrieval mechanism that depends on the presence of a back-
ward target-to-prime association. We comment more on this intrigu-
ing finding later.

Dissociating Nonword Type and Stimulus Quality
Effects: Implications for Models

We now consider the broader theoretical implications of our
findings for models of word recognition and lexical decision
performance. The present study was motivated by an intriguing
dissociation reported by Lupker and Pexman (2010), wherein the
joint effects of nonword type and frequency were very different
from the joint effects of nonword type and semantic priming. That

147ADDITIVE AND INTERACTIVE EFFECTS



is, whereas frequency effects became larger in the presence of TL
nonwords, priming effects remained the same size. According to
Lupker and Pexman, any model that accounts for nonword type
effects in lexical decision performance using a single, lexically
driven mechanism is hard pressed to account for this pattern. These
include the MROM (Grainger & Jacobs, 1996), the diffusion
model (Ratcliff et al., 2004), and the Bayesian reader model
(Norris, 2006, 2009).

First, let us consider how the three models capture the frequency
by nonword type interactions. In the MROM, lexical decisions to
words are made when the activation level of individual lexical
representations (i.e., local activity) or the summed activation of all
representations (i.e., global activity) exceed their respective thresh-
olds. The response threshold for global activation, also known as
the � criterion, is set higher as nonword distracters become more
wordlike. This implies that as nonword wordlikeness increases,
word responses are influenced to a greater extent by local, relative
to global, lexical activity, resulting in longer latencies. Impor-
tantly, variations in the � criterion (as a function of nonword type)
exert more influence on low-frequency than on high-frequency
words, yielding larger frequency effects in the context of wordlike
nonwords. Turning to the diffusion model (Ratcliff et al., 2004),
nonword context has a greater impact on the drift rate of low-
frequency words than on the drift rate of high-frequency words.
Consequently, the difference between the drift rates of high- and
low-frequency words is magnified as distracters become more
wordlike. Finally, in the Bayesian reader model (Norris, 2006,
2009), the model continuously computes the ratio of the summed
likelihood that the presented letter string is a word to the summed
likelihood that it is a nonword; evidence for a word response
accumulates more rapidly as this ratio becomes larger. Increasing
distracter wordlikeness increases the nonword likelihood, which
slows down lexical decision to both words and nonwords. Indeed,
the Bayesian reader successfully simulates the Nonword Type �
Word-Frequency interaction (see Norris, 2009, for more details).

In short, the three single-process models described above can
accommodate the well-known interaction between nonword type
and word-frequency. With the exception of the diffusion model,
which accounts for word-frequency (Ratcliff et al., 2004) and
priming (Ratcliff & McKoon, 1988) effects via drift rate changes,
the other models have not yet been extended to explicitly account
for semantic priming effects. However, priming effects could, in
principle, reflect the same mechanisms underlying frequency ef-
fects. Specifically, just as activation thresholds (or resting activa-
tion levels) are lower for high-frequency words, compared to
low-frequency words, activation thresholds (or resting activation
levels) could be lower for targets primed by related words, com-
pared to targets primed by unrelated words. However, as Lupker
and Pexman (2010) have correctly pointed out, if priming and
frequency effects indeed implicate a common lexical mechanism,
then semantic priming should also interact with nonword type, a
prediction that is clearly at odds with their findings and the results
of Experiment 1.

In addition to the problems posed for the extant models by the
differential effect of nonword difficulty on semantic priming and
word-frequency effects, one finds a qualitatively different pattern
when one considers increasing lexical decision difficulty by degrad-
ing the target. The Stimulus Quality � Priming interaction (explored
in Experiment 2), which at the level of the mean has been replicated

by various investigators (e.g., Balota et al., 2008; Borowsky &
Besner, 1993; Brown & Besner, 2002; Meyer et al., 1975; Thomas et
al., 2012), in conjunction with the well-known additive effects of
stimulus quality and frequency (Balota & Abrams, 1995; Becker &
Killion, 1977; Plourde & Besner, 1997; Stanners, Jastrzembski, &
Westbrook, 1975; Yap & Balota, 2007) provide an interesting coun-
terpoint to the intriguing relationships between nonword type, fre-
quency, and priming. Remarkably, nonword type is additive with
priming but interactive with frequency, whereas stimulus quality is
additive with frequency but interactive with priming. Again, if one
assumes that frequency and priming effects implicate a common
lexical locus, then it is not obvious why stimulus quality is additive
with the former and interactive with the latter.

Possibly, one needs to consider a completely different perspec-
tive to account for this complex pattern of results. Plaut and Booth
(2000) proposed a single-mechanism parallel distributed process-
ing (PDP) model, in which input and output processes are medi-
ated by a nonlinear sigmoid function. The full details of this model
are beyond the scope of this report, but essentially, the nonlinear
function allows equal differences in the input to be reflected by
equal or unequal differences of the output, depending on the
portion of the function being considered (see Figure 6). Words and
nonwords are discriminated on the basis of semantic stress (a
measure of familiarity); words, compared to nonwords, are asso-
ciated with higher stress values. Hence, this connectionist model,
unlike the single-process models described above, can potentially
accommodate the complex joint effects of stimulus quality, word-
frequency, and semantic priming. Although Plaut and Booth have
explicitly mentioned that the specific implemented model they

Figure 6. The sigmoid activation function of Plaut and Booth’s (2000)
model. HF � high-frequency; H � high; LF � low-frequency; L � low;
Unrel � unrelated; Rel � related; Freq � frequency. Reproduced with
permission from “Individual and Developmental Differences in Semantic
Priming: Empirical and Computational Support for a Single-Mechanism
Account of Lexical Processing,” by D. C. Plaut and J. R. Booth, 2000,
Psychological Review, 107, p. 832. Copyright 2000 by the American
Psychological Association.
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described could not handle nonword type effects (see p. 812 of
their article), an earlier PDP model (Plaut, 1997) successfully
simulated nonword type effects in isolated word recognition by
implementing the assumption that more wordlike nonwords (such
as pseudohomophones or TL nonwords) should be associated with
higher stress values than less wordlike nonwords. However, it is
noteworthy that the architectures of the two models are quite
different. Specifically, Plaut’s (1997) model, compared to its suc-
cessor, had twice as many semantic units, had 10 times the number
of hidden units, had six times the number of orthographic units,
and was feedforward rather than recurrent (see Borowsky &
Besner, 2006, for more details). Whether Plaut and Booth’s model
can indeed discriminate between words and wordlike nonwords
accurately while at the same time correctly simulating the joint
effects of nonword type, stimulus quality, frequency, and priming
is an interesting empirical question that can only be appropriately
addressed via simulations on the actual implemented model. Cer-
tainly, it will be challenging for the model to explain why manip-
ulating the semantic stress of the nonword distracters exerts such
different influences on semantic priming and word-frequency ef-
fects. Additionally, Borowsky and Besner (2006; Besner &
Borowsky, 2006) have highlighted how the PDP model’s reliance
on a sigmoid function to relate input activation to RTs does not
allow the model to simulate additive effects of two factors (i.e.,
nonword type and priming) when one of those factors (i.e., non-
word type) produces an interaction with a third factor (i.e., word-
frequency) within the same range of RTs (see also Plaut & Booth,
2006). A more recent study by Besner, Wartak, and Robidoux
(2008) has also indicated that the model incorrectly simulates the
joint effects of stimulus quality and word-frequency. Specifically,
the model produces underadditivity, additivity, or overadditivity of
the two factors depending on the size of the stimulus quality effect,
whereas skilled readers yield a broader pattern of additivity.

Tying It All Together:
The Case for a Multistage Model

The foregoing discussion makes it clear that even if one only
considers mean-level RT performance, single-process models that
postulate a common locus for frequency and priming effects will
have difficulty explaining why (1) nonword type is additive with
priming but interactive with frequency and (2) stimulus quality is

additive with frequency but interactive with priming. McNamara
(2005) has also pointed out that traditional priming accounts (e.g.,
spreading activation, verification, compound-cue) are too simple
to capture the complex relations among word-frequency, stimulus
quality, and semantic priming, and we have now added the differ-
ential effects of stimulus quality and nonword type on semantic
priming to the mix (see Table 4).

As a starting point in this discussion, we are relying on Stern-
berg’s (1969) additive factors logic to interpret the pattern of RT
factor effects observed in the present study and to make inferences
about the organization of the lexical processing architecture. The
logic is based on the premise that independently changeable,
serially arranged stages underlie lexical processing, and that pro-
cessing is discrete (i.e., thresholded), that is, processing in a later
stage begins only after processing in an earlier stage is complete.
Additive effects of factors suggest that they influence different
stages, whereas interactive effects suggest that they influence at
least one common stage.

Because the current discussion relies on additive factors logic, it
is important to remember there are some limitations. Specifically,
it has been known for some time that although independent,
separately modifiable stages imply additive effects, additive ef-
fects do not necessarily imply separate stages. For example, in the
cascade model (Ashby, 1982; McClelland, 1979), all processes are
operating continuously, and information is passed from one pro-
cess to the next as soon it becomes available. Importantly, the
cascade model, under some parameter constraints, is also able to
produce approximately additive effects without a discrete-stage
architecture. In order to better adjudicate between the two alter-
natives, Roberts and Sternberg (1993) examined the extent to
which the stage and cascade models could account for human
performance at the level of the mean RT and, more importantly, at
the level of the RT distributions across different experiments
(detection, identification, classification). Overall, they found that
the predictions from the stage model provided a better fit to the
empirical data sets. Interestingly, the cascade model was most
successful under parameter settings where it resembled a stage
model, although even this version of the cascade model was
rejected after it made incorrect predictions about the relations
among means and variances (Roberts & Sternberg, 1993; Stern-
berg, 1998). Related to this, Yap and Balota (2007) also observed

Table 4
Joint Effects of Stimulus Quality, Priming, Word-Frequency, and Nonword Type

Effect Description of interaction (if applicable) Study

1. Stimulus Quality � Priming � RP Additive effects of Stimulus Quality and Priming when
RP is low (.25). More priming for degraded,
compared to clear, targets when RP is high (.50).

Stolz & Neely (1995)

2. Priming � Word-Frequency � Vocabulary Additive effects of Priming and Word-Frequency for
high-vocabulary participants. More priming for LF,
compared to HF, targets for the low-vocabulary
participants.

Yap et al. (2009)

3. Nonword Type � Word-Frequency Larger word-frequency effects when more wordlike
nonwords are used.

Stone & Van Orden (1993)

4. Additive effects of Stimulus Quality and Word-Frequency Yap & Balota (2007)
5. Additive effects of Nonword Type and Priming Lupker & Pexman (2010)

Note. RP � relatedness proportion; LF � low-frequency; HF � high-frequency.
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additive effects of stimulus quality and word-frequency in means
and in higher order moments (i.e., variance and skewness). This is
a challenging pattern for the cascade model to handle, because it
predicts additivity at the level of the mean but not necessarily at
the level of higher order moments (Roberts & Sternberg, 1993). At
a more general level, it is unclear how any model based on the
interactive activation framework (which is predicated on top-down
and bottom-up cascaded processing between modules) can handle
the combined pattern of additive and interactive effects in the
present study. For these reasons, and given the current level of
development of computational models in the field, we believe that
the stage framework continues to be a useful, albeit metaphorical,
way for accommodating additive and interactive patterns of results
from factorial designs.

Multistage Processing in Lexical Decision

In the remainder of this article, we describe how a multistage
framework can provide an understanding of the intriguing quali-
tative differences between stimulus quality and nonword type
effects, and between priming and word-frequency effects. To pre-
view, our descriptive model is predicated on the idea that multiple
stages of processing subserve lexical-semantic processing
(Borowsky & Besner, 1993, 2006; Stolz & Besner, 1998). This
allows the loci of priming and word-frequency effects to be further
decoupled, along with an attempt to understand the clear differ-
ences in the underlying RT distributions as a function of these
variables. Like Borowsky and Besner (1993), we do not make
precise claims about the specific nature of the activation (i.e.,
discrete vs. continuous) across stages, but for ease of exposition, it
is assumed that the model can contain both discrete and continuous
processing features (see McNamara, 2005). Importantly, it has
been shown that additive factors logic can be extended to cascaded
processing frameworks or hybrid frameworks that include discrete
and continuous features (McClelland, 1979, p. 312). Of course, we
acknowledge that aspects of this model are speculative. However,
as one reviewer has pointed out, it may take a while before word
recognition researchers are able to develop a cogent, integrated
account of the full range of extant data. In the meantime, we
believe that a staged framework provides a useful way for orga-
nizing our findings and the attendant theorizing.

As a starting point, we adopt the multistage framework sug-
gested by McNamara (2005) and Stolz and Besner (1998). Ac-
cording to this framework, there are three levels (letter, lexical,
semantic) of representation and processing (see Figure 7); connec-
tions between different levels are excitatory, whereas connections
within levels are inhibitory. Presenting a prime (e.g., NURSE) first
activates letter-level representations, followed by activation at the
lexical (via Pathway A) and semantic (via Pathway B) levels.
Semantic priming is the result of spreading activation from the
target word (i.e., NURSE) to related words (e.g., DOCTOR)
within the semantic level. At the same time, activation is feeding
backward from the semantic level to the lexical (via Pathway C)
and letter (via Pathway D) levels, respectively preactivating the
lexical-level and letter-level representations for DOCTOR. Hence,
should DOCTOR appear shortly after NURSE, it can be processed
more efficiently because its letter-, lexical-, and semantic-level
representations have been partially activated. For our purposes,
two additional points are worth highlighting. Based on the additive

effects of stimulus quality and frequency (Yap & Balota, 2007)
and the additive effects of priming and frequency for skilled
lexical processors (Yap et al., 2009), it is assumed that stimulus
quality influences only the letter level directly, word-frequency
influences only the lexical level directly, and semantic priming
influences only the semantic level directly. The framework also
does not possess a dedicated mechanism for making lexical deci-
sions. As we discuss in a later section, this omission has important
implications.

How might this model account for extant effects, both at the
level of mean RTs and at the level of RT distributional character-
istics? First, consider the interaction between stimulus quality and
priming, where priming effects are larger for degraded targets. The
traditional account is as follows: Semantic priming reflects spread-
ing activation within the semantic level and feedback to lower
levels, which collectively preactivates the semantic, lexical, and
letter-level representations of targets related to the prime. As a
consequence of this feedback, related targets will be disrupted less
by visual degradation than unrelated targets, yielding an overaddi-
tive interaction. Note that both spreading activation and semantic
feedback are prospective in nature, because these processes occur
before the target is presented. In other words, within the multistage
framework, the received explanation for the Stimulus Quality �
Priming interaction is based solely on prospective priming mech-
anisms. As discussed earlier, the recent study by Thomas et al.
(2012) places further constraints on the mechanisms driving this
interaction. Specifically, their findings clearly indicate that the
Stimulus Quality � Priming interaction is mediated by a retro-
spective prime-retrieval mechanism that relies on backward target-
to-prime associations. This mechanism is strategically engaged

Figure 7. An interactive-activation multistage model of semantic prim-
ing. Reprinted with permission from Semantic Priming: Perspectives From
Memory and Word Recognition, by T. P. McNamara, 2005, p. 41, New
York, NY: Psychology Press. Copyright 2005 by the Taylor & Francis
Group.
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when target processing is difficult (e.g., when degraded or low-
frequency words are presented), so that prime information can
compensate for compromised bottom-up processing. Hence, in-
stead of semantic feedback, the greater influence of priming for
degraded targets might be better attributed to a retrospective prime
retrieval process (e.g., retrospective semantic-matching; Neely &
Keefe, 1989).

In this light, we can now revisit the interaction between stimulus
quality and priming, where priming is reflected by distributional
shifting for clear targets but increases across quantiles for de-
graded targets. When a prime is presented (e.g., NURSE), related
representations in the semantic level1 (e.g., DOCTOR) are preac-
tivated through spreading activation, affording them a headstart on
target processing. In this instance, the headstart yielded by the
related prime is prospective in nature, because the facilitation
occurs before the target is presented (e.g., Balota et al., 2008).
However, when targets are difficult to resolve in some way (e.g.,
they are visually degraded), this engages a prime-retrieval mech-
anism (Thomas et al., 2012). The operation of this mechanism is
reflected by both shifting and an increase in the slow tail of the
distribution. Importantly, the influence of the prime is proportional
to the difficulty of the trial, that is, priming effects are larger for
slower (presumably more difficult) targets when they are de-
graded. Prime retrieval is a retrospective mechanism (e.g., Balota
et al., 2008; Bodner & Masson, 1997; Neely et al., 1989; Ratcliff
& McKoon, 1988) because it implicates processes after the target
is presented.

The dichotomy between prospective (headstart) and retrospec-
tive (prime retrieval) priming is consistent with other empirical
work. For example, Stolz and Neely (1995) demonstrated that the
Stimulus Quality � Priming interaction was present only when
relatedness proportion (RP; i.e., the proportion of word targets
preceded by a related prime) was high (e.g., 0.50). When related-
ness proportion was decreased (e.g., 0.25), the two variables pro-
duced additive effects. In other words, retrospective prime re-
trieval, which the Stimulus Quality � Priming interaction is a
marker for, occurs only in the high RP condition (i.e., when the
utility of a related prime is high). Related to this, Yap et al. (2009)
reported that the Frequency � Priming interaction was observed
only in participants with relatively lower levels of vocabulary
knowledge. Participants with more vocabulary knowledge pro-
duced additive effects of the two factors. This fits well with the
aforementioned proposal that there is retrospective prime retrieval
only when the utility of related prime information is high. Specif-
ically, prime retrieval is not evident for higher-vocabulary-
knowledge participants because the utility of the prime is relatively
low for such participants who, by virtue of possessing high-
integrity lexical representations (e.g., Perfetti & Hart, 2002), are
able to process both high- and low-frequency targets fluently. In
summary, the RT distributional results of the Priming � Stimulus
Quality interaction are consistent with the notion that there is
retrospective prime retrieval when target processing is effortful
and the utility of the prime is high (see Thomas et al., 2012, for
further discussion of prospective and retrospective priming ef-
fects).

We believe the multistage framework proposed above can also
be extended in a relatively straightforward manner to accommo-
date the additive effects of nonword type and priming. As dis-
cussed earlier, the Nonword Type � Word-Frequency interaction,

in conjunction with the additive effects of nonword type and
priming, cannot be reconciled with the premise that nonword type,
word-frequency, and semantic priming affect the same, lexically-
driven mechanism (Lupker & Pexman, 2010). Instead, one needs
to posit additional processes/mechanisms, which are more tuned to
the task-specific decision mechanisms in the lexical decision task.
Specifically, while a primary set of lexical processes is sensitive to
frequency and priming (but not to nonword type), a secondary
process is influenced by frequency and nonword type (but not by
priming). In this light, we suggest augmenting the multistage
framework with an additional word/nonword discrimination mech-
anism that operates after the semantic level. Indeed, incorporating
such a decision-making stage is compatible with the idea that in
lexical decision, experimental variables (e.g., word-frequency) can
influence both lexical processing and postlexical decision-making
mechanisms that are specific to the task (Balota & Chumbley,
1984). For example, the decision stage could be modeled after
familiarity-based accounts (e.g., Balota & Chumbley, 1984;
Besner, 1983; Besner & Swan, 1982), which have been useful for
explaining nonword type effects (e.g., Yap et al., 2006) and other
lexical decision phenomena.

Familiarity-based accounts strongly emphasize the role of any
information that can be recruited by participants to discriminate
between words and nonwords. Because words are more familiar
and meaningful than nonwords, familiarity2 (and any variable
correlated with familiarity) is a useful dimension for driving the
discrimination process. For example, frequency influences the
postlexical discrimination process because low-frequency words,
compared to high-frequency words, are more similar to nonwords
on the relevant familiarity/meaningfulness dimension. Because of
the increased overlap between low-frequency words and non-
words, participants may be compelled to engage in more attention-
demanding analyses (e.g., spell-checking or retrieving semantic
referent) for such words, hence slowing lexical decision latencies
(Balota & Spieler, 1999). Clearly, in the context of very wordlike
nonwords that include a transposed pair of letters, it would be
adaptive for the decision maker to conduct a check process to
ensure that the spelling is correct.

Alternatively, the postlexical decision stage might be repre-
sented by a diffusion-based process (Ratcliff et al., 2004), which is
able to account for correct and error RTs very well, both at the
level of the mean and at the level of their distributions. Specifi-
cally, during target processing, the system is monitoring any
activity that is relevant for discriminating between words and
nonwords, and this activity could map on to a wordness value (i.e.,
a familiarity-like metric that reflects how wordlike a stimulus is)
that drives drift rates in a noisy diffusion decision process (Plaut,
1997; Ratcliff et al., 2004). In order to accommodate nonword type
effects, the mapping between semantic activity and drift rate could
be differentially weighted depending on the extent of overlap
between words and nonword distracters (see Yap et al., 2006, for

1 Although we are suggesting that semantic priming truly resides in the
semantic memory system, there is evidence that the priming effect may
indeed be due to associative co-occurrence and, hence, resides within the
lexical network (see review by Hutchison, 2003).

2 Here, familiarity refers to a multidimensional quantity that reflects the
orthographic and phonological similarity of a letter string to real words.
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more discussion). Of course, without explicit modeling of the full
set of effects, there is no assurance that a hybrid model that
integrates multiple stages with a diffusion mechanism can faith-
fully approximate performance.

To recapitulate, the additive effects of nonword type and prim-
ing are consistent with the notion that nonword type, but not
priming, influences postlexical decision-making mechanisms that
are sensitive to familiarity or wordness. Of course, this predicts
that variables that contribute to the familiarity/wordness of a letter
string should interact with nonword type. The canonical example
is word-frequency, that is, high-frequency words are perceived as
more familiar than low-frequency words. Other variables that
could potentially increase familiarity/wordness include imageabil-
ity (Cortese & Fugett, 2004), age of acquisition (Cortese &
Khanna, 2007; Juhasz, 2005), number of senses (Pexman & Lup-
ker, 1999), number of associates (i.e., number of distinct first
associates elicited in a free association task; Duñabeitia, Avilés, &
Carreiras, 2008), number of features (Pexman, Lupker, & Hino,
2002), body-object interaction (i.e., the extent to which referents
can be physically interacted with; Siakaluk, Pexman, Aguilera,
Owen, & Sears, 2008), sensory experience rating (i.e., the extent to
which a word evokes sensory/perceptual experiences; Juhasz, Yap,
Dicke, Taylor, & Gullick, 2011), and repetition (Balota & Spieler,
1999). With this in mind, it is noteworthy that nonword type has
already been shown to interact with frequency (Stone & Van
Orden, 1993), imageability (James, 1975), number of senses
(Pexman & Lupker, 1999), and number of features (Pexman et al.,
2002), with the other variables yet to be investigated. Of course,
the corollary here is that priming a word with its semantic asso-
ciate does not increase its familiarity/wordness.

Why does semantic priming not increase the familiarity or
wordness of a word? The repetition priming (i.e., primes are
identical to the target) literature might be informative here. Al-
though the precise bases of repetition priming remain controversial
(see Tenpenny, 1995, for a review), most researchers agree that
repetition effects involve multiple mechanisms, that is, a short-
term effect reflecting lexical activation and a long-term effect
reflecting memory trace retrieval (see Coane & Balota, 2011;
Versace & Nevers, 2003). Interestingly, Forster and Davis (1984)
have suggested that the locus of repetition priming’s episodic
influence, but not its short-term lexical effect, is at the decision
stage of the lexical decision task. We have proposed that in the
absence of retrospective prime retrieval, which appears to be
modulated by the utility of the prime, semantic priming effects
reflect a simple headstart mechanism, wherein primes preactivate
related targets to the same extent. Parenthetically, the notion of a
headstart converges nicely with the observation that the semantic
priming of clear targets reflects changes in nondecision (i.e.,
encoding and response execution) time but not drift rate.

Assuming that these preactivated targets do not lay down epi-
sodic traces, and priming-based familiarity/wordness critically de-
pends on episodic influences, it therefore follows that headstart-
mediated semantic priming should produce additive effects with
any variable (e.g., nonword type) whose influence is localized to
the decision stage. Indeed, the notion that semantic and repetition
priming tap different processes meshes well with den Heyer and
Goring’s (1985) finding that the effects of semantic and repetition
priming are additive in lexical decision. Of course, it is important

to emphasize that this explanation is post hoc and needs to be
empirically verified in future studies.

Conclusions

In summary, semantic priming is one of the most robust and
extensively studied effects in the word recognition literature. Us-
ing both conventional analyses of means and converging analyses
(ex-Gaussian, quantile, diffusion modeling) of RT distributions,
the present study provides a clearer understanding of the intriguing
dissociation between semantic priming and different variables that
increase the difficulty of the lexical decision task. Specifically,
semantic priming produces interactive effects with stimulus qual-
ity (primarily in the tail of the RT distribution) and additive effects
with nonword difficulty. In contrast, word-frequency produces the
opposite pattern of joint effects, that is, word-frequency produces
additive effects with stimulus quality, and interacts with nonword
difficulty, again primarily in the tail of the distribution (see Yap et
al., 2006). We are led to a descriptive framework that relies on
distinct and interactive stages of processing leading from input to
decision in the lexical decision task.

Of course, the present account is based on a metaphorical
description of the stages and processes that we and others (e.g.,
Borowsky & Besner, 1993; McNamara, 2005; Stolz & Besner,
1998) believe are useful for explaining the complex set of results
that have now been well-established in the rich visual word rec-
ognition literature. We have not endorsed a particular computa-
tional approach in accommodating the present set of results, be-
cause it is likely that while extant models may capture a subset of
findings, other findings may fall outside the scope of a given
model. Indeed, these latter findings may reflect specific stages of
processing brought on-line by the demands of the lexical decision
task. We look forward to further explorations of these intriguing
results within extant models.
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Appendix

Stimuli in Experiments 1 and 2

PRIME TARGET PRIME TARGET PRIME TARGET

MINDED ABSENT BIT DRILL HALLOWEEN PUMPKIN
MISTREAT ABUSE HUMILIATE EMBARRASS VIOLET PURPLE
SUGGESTION ADVISE HUG EMBRACE FURY RAGE
PHYSIOLOGY ANATOMY JEALOUSY ENVY ACCEPT REJECT
RENOUNCE ANNOUNCE DIMINISH FADE BEEF ROAST
AGGRAVATE ANNOY PHYSICAL FITNESS DECAY ROT
BLUEPRINT ARCHITECT PASTE GLUE SPOILED ROTTEN
DESCEND ASCEND GANDER GOOSE SELLER SALESMAN
AMAZE AWE PASTURE GRAZE UPSTREAM SALMON
TUTU BALLET CHARCOAL GRILL SUB SANDWICH
ROUGE BLUSH NAIL HAMMER REPRIMAND SCOLD
COMPUTE CALCULATE CROPS HARVEST EGGS SCRAMBLE
DIAGRAM CHART HITCH HIKE WALRUS SEAL
GOURMET CHEF CLUE HINT GROW SHRINK
MONKEY CHIMPANZEE HOSTESS HOST DRAW SKETCH
CHOIR CHORUS NOTIFY INFORM SLOPE SKI
VACUUM CLEANER WOODWIND INSTRUMENT TECHNIQUE SKILL
CASHIER CLERK OFFEND INSULT SLENDER SLIM
MIX COMBINE CREATE INVENT SUFFOCATE SMOTHER
FUSS COMPLAIN RUN JOG DOZE SNOOZE
UNDERSTAND COMPREHEND POUCH KANGAROO MASSAGE SOOTHE
LINK CONNECT OZONE LAYER REAP SOW
ARTS CRAFTS SERMON LECTURE ROT SPOIL
IMAGINATION CREATIVITY CHAIN LINK DETECTIVE SPY
KNIT CROCHET FLUID LIQUID POSTAGE STAMP
BETRAY DECEIVE FORTUNE LOTTERY PILOT STEWARDESS
INCREASE DECREASE BUTLER MAID ADD SUBTRACT
VICTORY DEFEAT TUPPERWARE MICROWAVE SCALPEL SURGEON
THAW DEFROST PLUS MINUS BROOM SWEEP
REPUBLICAN DEMOCRAT DIVIDE MULTIPLY LIGHTNING THUNDER
VARY DIFFER ARTIST PAINTER NEAT TIDY
INVENT DISCOVER PINK PANTHER FLOOR TILE
DISGRACE DISGUST GUARDIAN PARENT UNDERGROUND TUNNEL
HONEST DISHONEST HESITATE PAUSE SWEEP VACUUM
LIKE DISLIKE ALLOW PERMIT HERO VILLAIN
DISINTEGRATE DISSOLVE WORD PHRASE SERVER WAITER
SWIMMER DIVER ELECTRICIAN PLUMBER WAITER WAITRESS
MULTIPLY DIVIDE OUNCE POUND BLUBBER WHALE
FLIPPER DOLPHIN RECOGNITION PRAISE EVIL WICKED
MULE DONKEY COPIER PRINTER LENGTH WIDTH
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Appendix (continued)

PRIME LEGAL NW PRIME LEGAL NW PRIME LEGAL NW

SCALDED ABBLAIMS ANGER FOLT DATA PRINGS
MERELY ABLOW PIN FRUNKER EXPANSION PROWN
SATISFIED ABTRAY PRIVACY GAISE RISKY PRUEAL
ADHESIVE AIG REEF GIRES LUNGS PUDGET
EXERCISE ALVEOBA PUNK GLERVING ZEBRA RACUST
REFRAIN ASTITE VESSEL GLIP PANCAKE ROG
POLLS ATTOND TOUGHEN GRASH REMARKABLE SCHINTER
PIPE ATTOW GLORIOUS HANDID SCALP SCOVENANCE
SNIP BAGGOT DETOUR HIFE FOLDING SCRASH
MOBSTER BANDOD CURE HOAL AMPLE SETRAYS
HORRORS BEEHOVE BRIDE HUPS COMEDY SHUMP
GENTLE BLIFFER ZERO INTRALECTS SHADOW SILD
CLINIC BLOWNINGLY POODLE IRRITERACY DECK SLONK
RESENTFUL BLUPID CREWS JOP HELICOPTER SLOUND
NUT BROWERING BILLION LANDIT LABELS SLOUP
INDIVIDUAL BRUNK TOY LARGIN PORTION SMASTOR
SHOWN CARNAY DIM LER PRYING SMICKER
MELLOW CERSERK LAD LICKET GOAL SNI
FORK CHIGS AMBITION LICYCLE DWELLING SNILL
MYSTERIOUS CHIRM INVENTORY LIDEN TALENTS SONE
CHEAPER CHRUTTER CIVILIZED LINTER SPENDS SPOVE
DEEPER CHUGGLE SQUANDER MENCHES STEW STECIPICE
FESTIVAL CLANSFER IDLE MIFER KICKING STORIFIED
COUNTRIES CLEB TIMING MOIL QUANTITY SUSHER
FLASHBACK CLERMOS JIGSAW MOT TANKER SUTTRESS
SPRINKLE CLIRMISHES MOTION MURDINESS GARBLED TACE
CRUSHED DALTOP LINING MURGLARY INCENSE TAULDRON
TONE DEPATE FROZE NALLOW COMMERCIAL THILING
TECHNOLOGY DETROTH INVITATION NOTARUSE SINGLED THRIP
TILTED DILT ALIENS OPPASION CEREAL TRAVELAN
THEREIN DORST SUSPICIOUS PACKLES LION TRINACH
ALTO DRALLER QUOTA PAULT DRIVEWAY TROKER
HANDING DRAMENS ANGLE PHRAWL OILY TROOGE
EARN DRATTY CHAT PLARTLY ROB TROST
GOSSIPING DRELL SPADE PLAUGABLE SOBS TUAL
REDUCE DROCKER CLUSTER PLIGOTS MASS TULL
TRANSPORT ESIN FOREHEAD PLINDED SCARF UNLUND
RUB FERBS POSED PLURIOUS FLOURISH VORGAL
OPTIMISTIC FIGHTEN SOAP PRAKES SONS WALPS
BANQUET FLINDLE LIDS PRANKFUL WALTZ WOCKED
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Appendix (continued)

PRIME TL NW PRIME TL NW PRIME TL NW

SQUANDER ABN AMBITION DISCNONECT ALIENS PORM
INVENTORY ADMINSITER CHEAPER DUTSY CEREAL POVRETY
TALENTS ADVSIOR KICKING EANREST REEF PULBISH
SCALDED ALD CREWS ELETCRIC FORK QEUER
SPADE AMSUE LIDS ELPOE CURE QUATNITY
NUT AUMSE LAD ETIQEUTTE IDLE REA
CLUSTER BAGDE RISKY EXPNAD PRYING RECEPIT
REMARKABLE BAKSET COMMERCIAL FAIERST GOAL RESREVE
HORRORS BANR POSED FECTH DATA RIBOBN
DRIVEWAY BASBEALL FLASHBACK FLWOER SUSPICIOUS RUOMR
ALTO BEAHLF RUB FOERST MOBSTER SAOP
GENTLE BLAEK SHADOW FOOELD ZEBRA SAPMLE
OILY BLESSNIG GLORIOUS FRAMGENT DIM SARACSTIC
SPENDS BLIDNED FOLDING GIGNER FOREHEAD SATLL
CIVILIZED BOBMS SNIP GIRP LINING SCAK
MASS BOUELVARD SATISFIED GMY COUNTRIES SHERWD
SOBS BREAHTER COMEDY GRUGDE DETOUR SHOLEACE
PORTION BUGIGNG THEREIN HOKCEY PUNK SLUBMER
SCALP CASAUL GARBLED HOTSILE STEW SPATSIC
DWELLING CATROON HELICOPTER HUDRLE POODLE SPLEDNID
SONS CELLOHPANE FLOURISH INGREDEINT MELLOW SPRAK
QUANTITY CHAIROT MERELY IRM MOTION STIE
PRIVACY CHEIMST EXPANSION JEKRED BANQUET STRATLE
AMPLE CHEKES LUNGS LANUCH QUOTA SUACE
OPTIMISTIC CHIARS ADHESIVE LAOF ZERO SUCECEDS
JIGSAW CILP INCENSE LEAHTER PIPE SUOR
ANGER CLIAMTE REDUCE LOACTE INDIVIDUAL SVAES
SINGLED CONENCT CRUSHED LODULY FESTIVAL SWRON
LION COPMASS SOAP LOGDE TIMING SYL
VESSEL COUSNEL CHAT LSATS CLINIC TAEKR
BRIDE CRITREIA MYSTERIOUS LYIRC PANCAKE TEPMER
FROZE CRON BILLION MAITNAIN ROB THRETAEN
ANGLE CUHCK TECHNOLOGY MAKRED TANKER TIDNIGS
SHOWN DAERD LABELS MASSGAE TRANSPORT TRGAIC
TILTED DEABTE POLLS MCOK TOUGHEN VANQIUSH
GOSSIPING DEDALY REFRAIN MNEU INVITATION VIAN
SPRINKLE DEINAL EXERCISE MZAE DECK VITRUE
SCARF DETETNION RESENTFUL OWEND TONE WAETRS
TOY DETREMINE PIN PAESANT DEEPER WIERD
WALTZ DISCILPINE HANDING PEIRSH EARN WOVLES

Note. NW � nonword; TL � transposed-letter.
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