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Abstract
Although it is widely recognized that response time (RT) distributions are almost always positively skewed and that mathematical
psychologists have developed straightforward procedures for capturing characteristics of RT distributions, researchers continue
to rely primarily on mean performance, which can be misleading for such data. We review simple procedures for capturing
characteristics of underlying RT distributions and show how such procedures have recently been useful to better understand
effects from standard cognitive experimental paradigms and individual differences in performance. These well-studied procedures
for understanding RT distributions indicate that effects in means can be produced by (a) shifts of RT distributions, (b) stretching of
slow tails of RT distributions, or (c) some combination. Importantly, effects in means can actually be obscured by opposing influ-
ences on the modal and tail portions of RT distributions. Such disparate patterns demand novel theoretical interpretations.
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We all love the mean! The mean naturally provides an easy

summary statistic for multiple observations, and as a result,

means are common in our everyday lives (e.g., average miles

per gallon, batting average, political approval rating). How-

ever, anyone who has taken an introductory statistics course

knows that means are only one way to provide an estimate for

a distribution of numbers and that they really work best for dis-

tributions that are relatively symmetrical in shape around some

mode. Importantly, means can be misleading. For example,

consider a politician’s mean approval rating. The mean may

only represent a minority of voters since approval rating is

likely to reflect a bimodal distribution based on party alle-

giance. Distributions can also be asymmetrical around a single

mode. Empirical response time (RT) distributions, the focus of

the present article, are virtually always positively skewed, with

RTs clustering at the faster end of the scale. Given our knowl-

edge of the shape of RT distributions, it is surprising that the

vast majority of studies of mental chronometry still rely on

mean RT performance. For example, we recently reviewed

285 articles published in 2010 in three leading experimental

journals, and found that 49% of the studies used RT measures.

Importantly, of those articles that used RT as a dependent mea-

sure, 95% relied primarily on mean RT.

We first briefly describe alternative methods for capturing

the effects of manipulations on the underlying distributions in

RT experiments. This is followed by a discussion of what we

have recently learned from a series of studies from our laboratory

that have examined RT distributions. These studies illustrate the

distinct patterns one can obtain when examining underlying RT

distributions. It is important to emphasize that these are not new

observations (e.g., Heathcote, Popiel, & Mewhort, 1991; Luce,

1986; Ratcliff, 1979; Ratcliff & Murdock, 1976). Our goal here

is simply to build on this earlier pioneering work to further

demonstrate the advantages of examining the effects of standard

cognitive manipulations on RT distributions.

There are three general approaches for understanding the

influences of variables on RT distributions. The first and ulti-

mately the preferred way is to use a computationally explicit

model that makes specific predictions about the characteristics

of RT distributions. The most common example here is the dif-

fusion model (Ratcliff, 1978), which makes predictions about

the RT distributions for both correct and incorrect responses

in binary-decision tasks. Second, one can evaluate the influ-

ence of manipulations on the parameters derived from a

Corresponding Author:

David A. Balota, Department of Psychology, Washington University, St. Louis,

MO 63130

E-mail: dbalota@wustl.edu

Current Directions in Psychological
Science
20(3) 160-166
ª The Author(s) 2011
Reprints and permission:
sagepub.com/journalsPermissions.nav
DOI: 10.1177/0963721411408885
http://cdps.sagepub.com



mathematical function that has been fit to an empirically

obtained RT distribution. The third approach is to simply plot

the shape of the RT distribution to determine how a manipula-

tion changes the different regions of the distribution. Because

many RT studies do not rely on predictions from explicit com-

putational models, we focus here primarily on the latter two

approaches.1

Fitting a Mathematical Function to an RT
Distribution

A useful approach to understanding the influence of a manipu-

lation is to fit a mathematical function to an RT distribution to

assess how different parameters of the function are modulated

by experimental manipulations. There are many useful and

well-studied functions, including the ex-Gaussian, Wald,

Gamma, and Weibull, among many others (see Van Zandt,

2000, for a review of the advantages and disadvantages of each

function). Here we focus on the ex-Gaussian function, which is

the convolution (a mathematical combination) of a Gaussian and

an exponential distribution. The mode and standard deviation of

the Gaussian component are approximated by m and s respec-

tively, while the exponential function is approximated by t,

which reflects the mean and standard deviation of the exponen-

tial component.

The ex-Gaussian function possesses a number of useful prop-

erties, as Ratcliff and Murdock (1976) and Heathcote et al. (1991)

have noted. First, the function provides excellent fits for empiri-

cally obtained RT distributions (see also Luce, 1986). Second,

and importantly, parameters from the ex-Gaussian function

algebraically map onto the mean of an RT distribution. Specifi-

cally, the mean of an empirically obtained RT distribution is con-

strained to be the sum of m and t. Hence, because of this

constraint, the ex-Gaussian approach takes an important step

toward making contact with the mean-dominated literature.2

Figure 1 displays how a variable might influence the charac-

teristics of an RT distribution as reflected by ex-Gaussian para-

meters. Comparing the top and second panel, one sees a simple

shift in the RT distribution, as reflected by a change only in m.

Comparing the top and third panel, one can see only a stretch-

ing of the tail of the distribution, as reflected by a change in t.

Comparing panels A and D, one can see a trade-off between

m and t, such that there are two counteracting influences at the

distributional level but no difference in the means. Importantly,

all three patterns have now been well established in the experi-

mental literature.

Descriptive Plots of RT Distributions

Just as there are multiple mathematical functions to fit an

empirically obtained RT distribution, there are also multiple

ways to plot RT distributions. These include Hazard, Delta,

Quantile, and Vincentile plots. Simply plotting the data is very

useful whenever one considers effects on underlying distribu-

tions, and there should be convergence between such plots and

parameter estimates obtained by fitting a mathematical

function to empirical data. Here, for simplicity, we describe

Quantile plots. In quantile3 analyses, one rank orders the RTs

for a given participant as a function of condition and plots the

quantiles (.1, .2, .3, etc.). One can then plot the difference in the

quantiles to better understand how a variable influences differ-

ent portions of the underlying RT distribution. A related proce-

dure involves Delta plots, which display the effects of variables

as a function of mean response latency (see De Jong, Liang, &

Lauber, 1994).

Fig. 1. Possible changes in distributions and the underlying influences
on mean estimates and the parameter estimates from ex-Gaussian
analyses. Adapted from ‘‘Word Frequency Repetition, and Lexicality
Effects in Word Recognition Tasks: Beyond Measures of Central
Tendency,’’ by D.A. Balota and D.H. Spieler, 1999, Journal of
Experimental Psychology: General, 128, p. 33. Copyright 1999, American
Psychology Association.
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Convergence Between Ex-Gaussian
Parameters and Quantiles

It is important to understand the relation between function

fitting and plotting the effects of a variable on empirical RT

distributions. In order to address this, we used Monte Carlo

simulations to generate ex-Gaussian distributions (comprising

10,000 observations for each distribution) with varying levels

of each parameter (see Fig. 2 legends for specific parameter

values used). For example, the top two panels of Fig. 2 display

the quantiles for two hypothetical conditions. The top panel

displays an effect on m, whereas the middle panel displays an

effect on t. The bottom panel displays the plot of differences

across the quantiles. As shown, a change in m produces a simple

shift across the quantiles, whereas a change in t produces a

larger effect in the slower quantiles.4

What Have We Learned Beyond the Mean?

Effects of individual factors

For illustrative purposes, we will focus on some of our own

work (since quite distinct patterns have been observed) on the

influence of standard cognitive manipulations on RT distribu-

tions. First, consider the classic semantic-priming effect in the

lexical-decision (discriminating between real words and non-

words, e.g., FLIRP) and the speeded-pronunciation tasks (read-

ing words aloud). Participants recognize a word (e.g., CAT)

faster when it is preceded by a related word (DOG–CAT) than

by an unrelated word (DIG–CAT). The results of a recent series

of experiments indicate that for highly skilled readers,

semantic-priming effects are purely reflected in distributional

shifting—that is, priming modulates m, but not s or t (Balota,

Yap, Cortese, & Watson, 2008). This is consistent with a sim-

ple head-start model of priming whereby the related prime pro-

duces a constant benefit that is independent of target difficulty.

This contrasts well with word-frequency effects in lexical-

decision performance, whereby word frequency shifts and

increases the tail of the RT distribution (e.g., Balota & Spieler,

1999), reflecting a larger influence of frequency on the more

difficult items (see priming and frequency effects in the top

panel of Fig. 3).

Interestingly, there is also clear evidence of trade-offs

between parameters. Consider the classic Stroop color naming

effect. Heathcote et al. (1991) and Spieler, Balota, and Faust

(1996) found that the inconsistent facilitation in mean Stroop

color naming RT performance (i.e., naming the color of the

word RED printed in red compared to naming the color of the

word DEEP printed in red) was due to facilitation of the modal

portion in the congruent condition, which was offset by an

increase in the tail of the distribution, thereby canceling each

other out in the means.

Studies have also shown that different tasks that presumably

reflect similar mechanisms produce different influences on the

underlying RT distributions. For example, the congruency

effect (incongruent vs. congruent) in the Stroop task and the

Simon task (a spatial-selection task) are often viewed as

reflecting similar attentional selection mechanisms. However,

Castel, Balota, Hutchison, Logan, and Yap (2007) have shown

that the congruency effect in the Simon task is largest for the

fastest responses, whereas Spieler et al. (1996) have shown that

the congruency effect in the Stroop task is larger in the tail of

the RT distribution (see also Pratte, Rouder, Morey, & Feng,

2010).

Joint effects of factors

Researchers are most often interested in the combined effects

of multiple independent variables. For example, there is a large

literature indicating that semantic priming interacts with target

degradation, such that visually degraded targets show more

priming than clear targets do. As shown in the middle panel

of Figure 3, this interaction is primarily driven by the slow tail

of the RT distribution (see Balota et al., 2008).

In contrast to these interactive effects, word frequency

and stimulus degradation produce additive effects in lexical-

decision performance. These additive effects occur in all

parameters of the ex-Gaussian function and are also seen in

Quantile analyses (e.g., Yap, Balota, Tse, & Besner, 2008).

Interestingly, however, when one makes the discrimination

between words and nonwords more difficult in lexical decision

by using pseudohomophones (nonwords that sound like real

words, e.g., BRANE), compared to more typical pronounce-

able nonwords (e.g., FLIRP), one still finds additive effects

of word frequency and stimulus degradation in the means but

interactive opposing effects in the modal portion and the tail

of the RT distributions, respectively reflected in m and t. This

latter intriguing pattern has been replicated in three different

universities (see Yap et al., 2008), supporting the robustness

of these distributional analyses (see bottom panel of Fig. 3).

Insights Into Individual Differences

An important central issue in cognitive science is the nature of

individual differences in cognitive components. Regarding RT

distributions, it does appear that individuals carry with them

their own characteristic RT distributions that are relatively sta-

ble over time. For example, Yap, Balota, Sibley, and Ratcliff

(2010) recently investigated the test–retest correlations across

days of testing and found that the correlations for m, s, and t
were .717, .509, and .872 for lexical decision, and .865, .732,

and .940 for pronunciation, respectively, even though different

stimuli were presented across the days. It is noteworthy that the

that the tail (t) of the RT distribution appears to be more stable

than the modal (m) portion of the distribution, and indeed the

test–retest reliability for t was comparable to the correlations

in the means (.871 and .929, in the means for lexical decision

and pronunciation, respectively).

One of the most studied aspects of individual difference in

cognition is working-memory capacity (see Engle, Tuholski,

Laughlin, & Conway, 1999). Schmiedek, Oberauer, Wilhelm,

Süß, and Wittmann (2007) explored the relationship between

working-memory capacity and the ex-Gaussian parameters
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estimated from an independent set of RT tasks. The results

were surprisingly clear: t was by far the parameter most

strongly related to working memory. Tse, Balota, Yap, Duchek,

and McCabe (2010), using similar analyses, have replicated the

same pattern in a group of older adults using different RT tasks

and working-memory measures. Specifically, the path between
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Fig. 2. Isolated effects of changes in the ex-Gaussian parameters on the underlying quantiles based on Monte Carlo simulations, where each
distribution comprised 10,000 observations. The top panel displays an effect on m, whereas the middle panel displays an effect on t. The bottom
panel displays the plot of difference scores across conditions taken from the top two panels. RT ¼ reaction time.
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Main Effects of Frequency and Semantic Relatedness
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Fig. 3. Main effects of semantic relatedness and word frequency across quantiles, showing that semantic priming shifts reaction time
distributions, whereas word frequency both shifts and stretches the tail of the distribution (top panel); interactive effects of semantic priming
and visual degradation, showing that the larger semantic priming effects for degraded words than clear words is due to both a shift and stretching
of the tail of the distribution (middle panel); and a pattern in which the additive effects of word frequency and stimulus degradation observed in
the means reflect trade-offs between the modal portion and tail of the distribution (bottom panel).
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t and working-memory construct was –.90, whereas the paths

for m and s were .24 and –.09, respectively.

The robust relationship between t and working memory is

intriguing in light of the worst-performance rule developed in

the intelligence literature (e.g., Coyle, 2003). According to this

principle, participants’ slow RTs are more strongly related to

fluid intelligence than are their fast RTs. Given that working-

memory performance is strongly related to fluid intelligence

and t is related to the positive skew of RT distributions, the

relationship between t and working memory is consistent with

the worst-performance rule. This link between performance on

the most difficult trials and fluid intelligence further under-

scores the importance of examining the slow tail of RT

distributions.

Distinguishing Between Parameters
and Processes

Although tempting, we need to emphasize that one should be

careful not to simply map processes onto parameters or aspects

of RT distributions without converging evidence (Matzke &

Wagenmakers, 2009). For example, as Schmiedek et al.

(2007) point out, the relationship between working memory

and t observed in their data is also compatible with changes

in drift rate, a parameter in Ratcliff’s (1978) diffusion model

(mentioned earlier) that reflects how efficiently people accu-

mulate information about a stimulus. Drift-rate changes do not

demand inferences about working memory. Thus, at this point,

it is important to appreciate the limitations of mapping process

onto parameters. Just as in developing an understanding of the

mechanistic influence of a manipulation on mean RTs, one also

needs to rely on converging evidence across studies, in tandem

with explicit modeling, to constrain interpretations of how vari-

ables influence the underlying RT distribution.

Conclusions

The goal of the present article is to further encourage research-

ers to look beyond measures of central tendency to better

understand the influence of manipulations on performance.

Following early pioneering work (e.g., Ratcliff & Murdock,

1976; Heathcote et al., 1991), we have provided further evi-

dence that fitting an empirically obtained RT distribution

to a mathematical function (e.g., ex-Gaussian) and simply

plotting the RT distributions as a function of condition

afford significant advances over analyses of means in stan-

dard experimental paradigms. In exemplifying this

approach, we have shown how distributional analyses can

provide insights into individual differences across the life-

span and into commonly used experimental paradigms

(e.g., word-recognition, semantic-priming, Simon, and

Stroop tasks). Advances in science are often made in step

with an increase in the sensitivity of the measuring device,

and we continue the appeal that it is time to increase the

sensitivity of the microscope used to study mental

chronometry.
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Notes

1. Free and simple-to-use software packages are readily available that

enable any user to carry out distributional analyses on their own RT

data. For example, QMPE 2.18 (http://www.newcl.org/software/

qmpe.htm; Brown & Heathcote, 2003) affords easy fitting of RT

data with as few as 40 observations per condition.

2. Ex-Gaussian parameters can also be used to approximate the var-

iance (s2 þ t2) and skew of a distribution (2t3).

3. Quantiles are conceptually similar to percentiles, except that the

former range from 0 to 1 while the latter range from 0 to 100.

Instead of plotting quantiles, one can also plot Vincentiles, which

reflect the mean of a group of scores for a given individual (e.g.,

1 to 10%, 11 to 20%, etc.) averaged across participants as a func-

tion of condition (Gilchrist, 2000). In practice, the two methods

yield very similar results (Jiang, Rouder, & Speckman, 2004).

4. For simplicity, we have not shown how changes in s are reflected

in underlying RT distributions, but see Balota, Yap, Cortese, and

Watson (2008) for a discussion. Of course, these are idealized

changes in single parameters with the goal of making contact with

the mean-dominated RT literature.
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